Zhao Cheng, Du Yingxun, Wang Hongwei, Zhou Wenjie, Xun Fan, Liu Shun, Li Biao, Lu Xiancai, Wu Qinglong L, Xiao Ke-Qing, Xing Peng
Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
Nat Commun. 2025 Jul 21;16(1):6717. doi: 10.1038/s41467-025-62016-1.
The sequestration of organic carbon (OC) through mineral association in soils and sediments is a crucial process that regulates carbon sink dynamics and the global carbon cycle. However, minerals can participate in both abiotic and biotic OC transformations, altering the persistence of mineral-associated OC under anoxic conditions. In this work, we report that synergistic interactions among metal (oxyhydr)oxides, such as iron (Fe), manganese (Mn), and aluminum (Al) drive the polymerization of simple organic molecules into macromolecular geopolymers, increasing their electron transfer capacity by 52-115%. These geopolymers function as electron shuttles, enhancing OC decomposition through microbial dissimilatory iron reduction. This reduces the mean retention time (MRT) of OC bound to active and inert Fe minerals by 51.4 ± 15.6% and 74.1 ± 13.7%, respectively. Future carbon turnover models should explicitly account for the mineral composition, redox fluctuations, and microbial metabolic pathways to advance the understanding of the Earth's carbon sink.
通过土壤和沉积物中的矿物结合来封存有机碳(OC)是一个关键过程,它调节着碳汇动态和全球碳循环。然而,矿物可参与非生物和生物的OC转化,改变缺氧条件下与矿物结合的OC的持久性。在这项工作中,我们报告了金属(氢)氧化物(如铁(Fe)、锰(Mn)和铝(Al))之间的协同相互作用驱动简单有机分子聚合成大分子地质聚合物,使其电子转移能力提高了52 - 115%。这些地质聚合物起到电子穿梭体的作用,通过微生物异化铁还原增强OC分解。这分别使与活性和惰性Fe矿物结合的OC的平均保留时间(MRT)降低了51.4±15.6%和74.1±13.7%。未来的碳周转模型应明确考虑矿物组成、氧化还原波动和微生物代谢途径,以推进对地球碳汇的理解。