Schaller Megan L, Sykes Madeline M, Mecano Joy, Solanki Sumeet, Huang Wesley, Rebernick Ryan J, Beydoun Safa, Wang Emily, Bugarin-Lapuz Amara, Shah Yatrik M, Leiser Scott F
Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.
Department of Molecular and Cellular Pathology, University of Michigan, Ann Arbor, Michigan.
Cell Mol Gastroenterol Hepatol. 2025 Jul 19:101591. doi: 10.1016/j.jcmgh.2025.101591.
BACKGROUND & AIMS: The intestine plays a key role in metabolism and nutrient and water absorption and provides both physical and immunological defense against dietary and luminal antigens. The protective mucosal lining in the intestine is a critical component of intestinal barrier that, when compromised, can lead to increased permeability, a defining characteristic of inflammatory bowel disease, among other intestinal diseases. Here, we define a new role for the flavin-containing monooxygenase (FMO) family of enzymes in maintaining a healthy intestinal epithelium.
Using Caenorhabditis elegans, we measure intestinal barrier function, actin expression, and intestinal damage response. In mice, we utilize an intestine-specific, tamoxifen-inducible knockout model of the mammalian homolog of Cefmo-2, Fmo5, and assess histology, mucus barrier thickness, and goblet cell physiology. We also treat mice with the endoplasmic reticulum (ER) chaperone tauroursodeoxycholic acid.
In nematodes, we find Cefmo-2 is necessary and sufficient for intestinal barrier function and intestinal actin expression and is induced by intestinal damage. In mice, we find striking changes to the intestine within 2 weeks following FMO5 disruption. Alterations include sex-dependent changes in colon epithelial histology, goblet cell localization, and mucus barrier formation. These changes are significantly more severe in female mice, mirroring differences observed in patients with inflammatory bowel disease. Furthermore, we find increased protein folding stress in FMO5 knockout animals and successfully rescue the severe female phenotype with addition of a chemical ER chaperone.
Together, our results identify a highly conserved and novel role for FMO5 in the mammalian intestine and support a key role for FMO5 in maintenance of ER/protein homeostasis and proper mucus barrier formation.
肠道在新陈代谢以及营养和水分吸收中发挥关键作用,并对饮食和腔内抗原提供物理和免疫防御。肠道中起保护作用的黏膜层是肠道屏障的关键组成部分,一旦受损,可能导致通透性增加,这是炎症性肠病以及其他肠道疾病的一个决定性特征。在此,我们确定了含黄素单加氧酶(FMO)家族的酶在维持健康肠道上皮细胞方面的新作用。
我们利用秀丽隐杆线虫来测量肠道屏障功能、肌动蛋白表达和肠道损伤反应。在小鼠中,我们使用一种肠道特异性、他莫昔芬诱导的Cefmo - 2的哺乳动物同源物Fmo5基因敲除模型,并评估组织学、黏液屏障厚度和杯状细胞生理学。我们还用内质网(ER)伴侣牛磺熊去氧胆酸处理小鼠。
在秀丽隐杆线虫中,我们发现Cefmo - 2对于肠道屏障功能和肠道肌动蛋白表达是必需且充分的,并且受肠道损伤诱导。在小鼠中,我们发现FMO5破坏后2周内肠道出现显著变化。这些变化包括结肠上皮组织学、杯状细胞定位和黏液屏障形成的性别依赖性变化。这些变化在雌性小鼠中明显更严重,这与炎症性肠病患者中观察到的差异相似。此外,我们发现FMO5基因敲除动物中蛋白质折叠应激增加,并通过添加化学内质网伴侣成功挽救了严重的雌性表型。
总之,我们的结果确定了FMO5在哺乳动物肠道中具有高度保守的新作用,并支持FMO5在维持内质网/蛋白质稳态和适当黏液屏障形成中的关键作用。