Mooli Raja Gopal Reddy, Han Yerin, Fiorenza Ericka J, Balakrishnan Karthik, Kanshana Jitendra Singh, Kumar Suchita, Bello Fiona M, Nallanagulagari Anoop R, Karra Shreya, Tao Junyan, Delgado Evan R, Teng Lihong, Kohan Alison B, Singhi Aatur D, Jurczak Michael, Ramakrishnan Sadeesh K
Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.
Cell Mol Gastroenterol Hepatol. 2025 Jul 19;19(11):101593. doi: 10.1016/j.jcmgh.2025.101593.
BACKGROUND & AIMS: Liver-derived ketone bodies play an essential role in energy homeostasis during fasting by supplying fuel to the brain and peripheral tissues. Ketogenesis also helps to remove excess acetyl-CoA generated from fatty acid oxidation, thereby protecting against diet-induced hepatic steatosis. Despite this, the role of ketogenesis in fasting-associated hepatocellular lipid metabolism has not been thoroughly investigated.
We used mice with liver-specific knockout of HMGCS2 mice to determine how ACSL1-mediated esterification contributes to fasting-induced steatosis and performed biochemical assays, gene expression profiling, Western blotting, and histologic analyses. We further investigated the association between HMGCS2 expression, lipid re-esterification, and steatosis using human primary hepatocytes and liver samples from patients with metabolic dysfunction-associated steatohepatitis.
We show that ketogenic insufficiency, achieved through disrupting hepatic HMGCS2, worsens liver steatosis in both fasted chow-fed and high-fat-fed mice. Our findings indicate that hepatic steatosis arises from increased fatty acid partitioning to the endoplasmic reticulum (ER) for re-esterification, a process mediated by acyl-CoA synthetase long-chain family member 1 (ACSL1). Mechanistically, the accumulation of acetyl-CoA because of impaired hepatic ketogenesis drives the elevated translocation of ACSL1 to the ER. Furthermore, our study reveals heightened ER-localized ACSL1 and lipid re-esterification in human metabolic dysfunction-associated steatohepatitis cases exhibiting impaired hepatic ketogenesis. We also demonstrate that L-carnitine, which buffers excess acetyl-CoA, reduces ER-associated ACSL1 and alleviates hepatic steatosis.
Hepatic ketogenesis plays a crucial role in maintaining intracellular acetyl-CoA balance, regulating lipid partitioning, and preventing the development of fasting-induced hepatic steatosis.
肝脏产生的酮体在禁食期间的能量稳态中起着至关重要的作用,为大脑和外周组织提供能量。生酮作用还有助于清除脂肪酸氧化产生的过量乙酰辅酶A,从而预防饮食诱导的肝脂肪变性。尽管如此,生酮作用在禁食相关的肝细胞脂质代谢中的作用尚未得到充分研究。
我们使用肝脏特异性敲除HMGCS2的小鼠来确定ACSL1介导的酯化作用如何导致禁食诱导的脂肪变性,并进行了生化分析、基因表达谱分析、蛋白质印迹和组织学分析。我们还使用人原代肝细胞和代谢功能障碍相关脂肪性肝炎患者的肝脏样本,进一步研究了HMGCS2表达、脂质再酯化和脂肪变性之间的关系。
我们发现,通过破坏肝脏中的HMGCS2导致生酮功能不足,会使禁食的普通饲料喂养和高脂饲料喂养小鼠的肝脏脂肪变性恶化。我们的研究结果表明,肝脏脂肪变性源于脂肪酸向内质网(ER)的分配增加以进行再酯化,这一过程由酰基辅酶A合成酶长链家族成员1(ACSL1)介导。从机制上讲,由于肝脏生酮作用受损导致的乙酰辅酶A积累,促使ACSL1向内质网的易位增加。此外,我们的研究揭示,在表现出肝脏生酮作用受损的人类代谢功能障碍相关脂肪性肝炎病例中,内质网定位的ACSL1和脂质再酯化增加。我们还证明,可缓冲过量乙酰辅酶A的L-肉碱可减少内质网相关的ACSL1并减轻肝脏脂肪变性。
肝脏生酮作用在维持细胞内乙酰辅酶A平衡、调节脂质分配以及预防禁食诱导的肝脏脂肪变性发展中起着关键作用。