文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能简化信息以促进生殖遗传知识普及和健康公平。

Artificial intelligence-simplified information to advance reproductive genetic literacy and health equity.

作者信息

Naghdi Marjan, Cao Ping, Essers Rick, Heijligers Malou, Paulussen Aimee D C, van der Lugt Arie, Ruiter Robert A C, van Zelst-Stams Wendy A G, Salumets Andres, Zamani Esteki Masoud

机构信息

Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.

Department of Genetics and Cell Biology, GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.

出版信息

Hum Reprod. 2025 Jul 22. doi: 10.1093/humrep/deaf135.


DOI:10.1093/humrep/deaf135
PMID:40692125
Abstract

STUDY QUESTION: Can artificial intelligence (AI) and large language models (LLMs) effectively simplify patient education materials (PEMs) to advance reproductive genetic literacy and health equity? SUMMARY ANSWER: LLMs offer a promising approach to support healthcare professionals in generating effective, and simplified PEMs. WHAT IS KNOWN ALREADY: Reproductive genetic testing and counseling holds the potential to support a personalized approach to reduce the burden of genetic disorders. However, its uptake remains limited due to the complexity of the tests and the way that PEMs have been designed. This is more prominent in reproductive genetic testing, as vulnerability of patients may lead to over- or under-use of genetic testing technologies. STUDY DESIGN, SIZE, DURATION: We carried out a comparative observational study to evaluate the capacity of four AI/LLMs to simplify PEMs (n = 30) in reproductive genetics and assessing the clinical accuracy of simplified versions (n = 120) by experts (n = 30). Additionally, we devised a graphical user interface (GUI) to support real-time text simplification and readability analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS: We collected 30 PEMs covering six topics in reproductive genetics from well-recognized platforms, such as WHO, MedlinePlus, and Johns Hopkins. Each PEM was processed by four AI/LLMs (GPT-3.5, GPT-4, Copilot, Gemini) using a fixed prompt, resulting in 120 simplified outputs. We measured readability improvements using five validated metrics, such as simple measure of gobbledygook, each capturing distinct textual characteristics such as sentence length and word complexity. To evaluate clinical reliability of the simplified outputs, a panel of experts (n = 30) in reproductive genetics independently scored each text (3 per text). MAIN RESULTS AND THE ROLE OF CHANCE: All four LLMs significantly improved the readability of the PEMs (P-values <0.001), reducing text complexity to an average 6th-7th grade reading level. While Gemini and Copilot achieved the highest improvement in readability scores, GPT-4 received the highest expert rating across all criteria-accuracy (4.1 ± 0.9), completeness (4.2 ± 0.8), and relevance of omissions (4.0 ± 0.9; P < 10-8). These findings highlight the importance of balancing readability with content integrity to support informed decision-making, as excessive simplification may compromise essential medical information. We devised an open-access GUI that provides real-time PEM simplification and readability analysis to support the integration of AI-assisted approaches in clinical practice (https://huggingface.co/spaces/CellularGenomicMedicine/HealthLiteracyEvaluator). LIMITATIONS, REASONS FOR CAUTION: Careful evaluation of LLM-simplified PEMs is required to ensure that simplification does not lead to omission of critical information. In addition, in this study, we report only the readability improvements of AI-generated texts and expert evaluations. To truly assess the potential of these tools in advancing reproductive genetic literacy and promoting health equity, real-world patient feedback is essential. WIDER IMPLICATIONS OF THE FINDINGS: Integrating AI/LLM into patient education strategies may advance health equity by improving understanding and facilitating informed decision-making. Thereby, more effective engagement of patients in reproductive genetic testing programs by assisting them with well-informed decision-making. STUDY FUNDING/COMPETING INTEREST(S): The EVA specialty program (KP111513) of MUMC+, the Horizon-Europe (NESTOR-101120075), the Estonian Research Council (PRG1076), the Horizon-2020 innovation (ERIN-EU952516) grants of the European Commission, the Swedish Research Council (grant no. 2024-02530), and the Novo Nordisk Foundation (grant no. NNF24OC0092384). The authors declare no conflict of interest relevant to this study. TRIAL REGISTRATION NUMBER: N/A.

摘要

研究问题:人工智能(AI)和大语言模型(LLMs)能否有效简化患者教育材料(PEMs),以提高生殖遗传知识水平并促进健康公平? 总结答案:大语言模型为支持医疗保健专业人员生成有效且简化的患者教育材料提供了一种有前景的方法。 已知信息:生殖基因检测与咨询有潜力支持采用个性化方法减轻遗传疾病负担。然而,由于检测的复杂性以及患者教育材料的设计方式,其应用仍然有限。这在生殖基因检测中更为突出,因为患者的脆弱性可能导致基因检测技术的过度或使用不足。 研究设计、规模、持续时间:我们进行了一项比较观察性研究,以评估四种人工智能/大语言模型简化生殖遗传学患者教育材料(n = 30)的能力,并由专家(n = 30)评估简化版本(n = 120)的临床准确性。此外,我们设计了一个图形用户界面(GUI)来支持实时文本简化和可读性分析。 参与者/材料、环境、方法:我们从世界卫生组织、医学在线Plus和约翰霍普金斯等知名平台收集了30份涵盖生殖遗传学六个主题的患者教育材料。每个患者教育材料由四种人工智能/大语言模型(GPT - 3.5、GPT - 4、Copilot、Gemini)使用固定提示进行处理,产生120个简化输出。我们使用五个经过验证的指标来衡量可读性的提高,例如乱码简易度量,每个指标捕捉不同的文本特征,如句子长度和单词复杂性。为了评估简化输出的临床可靠性,一组生殖遗传学专家(n = 30)对每个文本(每个文本3个)独立评分。 主要结果及机遇的作用:所有四种大语言模型均显著提高了患者教育材料的可读性(P值<0.001),将文本复杂性降低到平均六年级至七年级的阅读水平。虽然Gemini和Copilot在可读性得分方面提高最多,但GPT - 4在所有标准——准确性(4.1±0.9)、完整性(4.2±0.8)和遗漏相关性(4.0±0.9;P < 10 - 8)方面获得了最高的专家评分。这些发现强调了在支持明智决策时平衡可读性与内容完整性的重要性,因为过度简化可能会损害基本医疗信息。我们设计了一个开放获取的图形用户界面,提供实时患者教育材料简化和可读性分析,以支持在临床实践中整合人工智能辅助方法(https://huggingface.co/spaces/CellularGenomicMedicine/HealthLiteracyEvaluator)。 局限性、谨慎的原因:需要仔细评估大语言模型简化的患者教育材料,以确保简化不会导致关键信息的遗漏。此外,在本研究中,我们仅报告了人工智能生成文本的可读性提高和专家评估。为了真正评估这些工具在提高生殖遗传知识水平和促进健康公平方面的潜力,现实世界中的患者反馈至关重要。 研究结果的更广泛影响:将人工智能/大语言模型整合到患者教育策略中可能通过增进理解和促进明智决策来推进健康公平。从而通过协助患者做出明智决策,使患者更有效地参与生殖基因检测项目。 研究资金/利益冲突:马斯特里赫特大学医学中心+的EVA专业项目(KP111513)、欧洲地平线(NESTOR - 101120075)、爱沙尼亚研究委员会(PRG1076)、欧盟委员会的地平线2020创新(ERIN - EU952516)资助、瑞典研究委员会(资助编号2024 - 02530)以及诺和诺德基金会(资助编号NNF24OC0092384)。作者声明与本研究无关的利益冲突。 试验注册号:无。

相似文献

[1]
Artificial intelligence-simplified information to advance reproductive genetic literacy and health equity.

Hum Reprod. 2025-7-22

[2]
Enhancing the Readability of Online Patient Education Materials Using Large Language Models: Cross-Sectional Study.

J Med Internet Res. 2025-6-4

[3]
Large language models and bariatric surgery patient education: a comparative readability analysis of GPT-3.5, GPT-4, Bard, and online institutional resources.

Surg Endosc. 2024-5

[4]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[5]
Silk-Ovarioids: establishment and characterization of a human ovarian primary cell 3D-model system.

Hum Reprod Open. 2025-7-10

[6]
Using AI to Translate and Simplify Spanish Orthopedic Medical Text: Instrument Validation Study.

JMIR AI. 2025-3-21

[7]
Readability, Reliability, and Quality Analysis of Internet-Based Patient Education Materials and Large Language Models on Meniere's Disease.

J Otolaryngol Head Neck Surg. 2025

[8]
Promoting patient health literacy in burn care through artificial intelligence language learning models: A study of text analysis and simplification.

Burns. 2025-8

[9]
Improving the Readability of Institutional Heart Failure-Related Patient Education Materials Using GPT-4: Observational Study.

JMIR Cardio. 2025-7-8

[10]
Artificial Intelligence Shows Limited Success in Improving Readability Levels of Spanish-language Orthopaedic Patient Education Materials.

Clin Orthop Relat Res. 2025-2-11

本文引用的文献

[1]
Commentary: Why is genetic testing underutilized worldwide? The case for hereditary breast cancer.

BJC Rep. 2024-10-1

[2]
Clinical-grade whole genome sequencing-based haplarithmisis enables all forms of preimplantation genetic testing.

Nat Commun. 2024-9-2

[3]
The fertility industry: profiting from vulnerability.

Lancet. 2024-7-20

[4]
Professionals' views on providing personalized recurrence risks for de novo mutations: Implications for genetic counseling.

J Genet Couns. 2025-2

[5]
From text to treatment: the crucial role of validation for generative large language models in health care.

Lancet Digit Health. 2024-7

[6]
The effect of using a large language model to respond to patient messages.

Lancet Digit Health. 2024-6

[7]
Ethical and regulatory challenges of large language models in medicine.

Lancet Digit Health. 2024-6

[8]
Adapted large language models can outperform medical experts in clinical text summarization.

Nat Med. 2024-4

[9]
Accuracy of Online Artificial Intelligence Models in Primary Care Settings.

Am J Prev Med. 2024-6

[10]
A 25-year odyssey of genomic technology advances and structural variant discovery.

Cell. 2024-2-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索