Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.
Nat Commun. 2024 Sep 2;15(1):7164. doi: 10.1038/s41467-024-51508-1.
High-throughput sequencing technologies have increasingly led to discovery of disease-causing genetic variants, primarily in postnatal multi-cell DNA samples. However, applying these technologies to preimplantation genetic testing (PGT) in nuclear or mitochondrial DNA from single or few-cells biopsied from in vitro fertilised (IVF) embryos is challenging. PGT aims to select IVF embryos without genetic abnormalities. Although genotyping-by-sequencing (GBS)-based haplotyping methods enabled PGT for monogenic disorders (PGT-M), structural rearrangements (PGT-SR), and aneuploidies (PGT-A), they are labour intensive, only partially cover the genome and are troublesome for difficult loci and consanguineous couples. Here, we devise a simple, scalable and universal whole genome sequencing haplarithmisis-based approach enabling all forms of PGT in a single assay. In a comparison to state-of-the-art GBS-based PGT for nuclear DNA, shallow sequencing-based PGT, and PCR-based PGT for mitochondrial DNA, our approach alleviates technical limitations by decreasing whole genome amplification artifacts by 68.4%, increasing breadth of coverage by at least 4-fold, and reducing wet-lab turn-around-time by ~2.5-fold. Importantly, this method enables trio-based PGT-A for aneuploidy origin, an approach we coin PGT-AO, detects translocation breakpoints, and nuclear and mitochondrial single nucleotide variants and indels in base-resolution.
高通量测序技术越来越多地导致了疾病相关遗传变异的发现,主要是在产后多细胞 DNA 样本中。然而,将这些技术应用于体外受精 (IVF) 胚胎中单细胞或少数细胞活检的核或线粒体 DNA 的植入前遗传学检测 (PGT) 是具有挑战性的。PGT 的目的是选择没有遗传异常的 IVF 胚胎。虽然基于测序的基因分型 (GBS) 单倍型分析方法能够进行单基因疾病 (PGT-M)、结构重排 (PGT-SR) 和非整倍体 (PGT-A) 的 PGT,但它们劳动强度大,仅部分覆盖基因组,并且对于困难的基因座和近亲夫妇来说很麻烦。在这里,我们设计了一种简单、可扩展和通用的全基因组测序单倍型分析方法,能够在单次检测中进行所有形式的 PGT。与基于 GBS 的核 DNA 最新 PGT、基于浅测序的 PGT 和基于 PCR 的线粒体 DNA 的 PGT 相比,我们的方法通过将全基因组扩增伪影减少 68.4%、覆盖范围至少增加 4 倍以及湿实验室周转时间减少约 2.5 倍,缓解了技术限制。重要的是,这种方法能够实现基于 trio 的 PGT-A 用于非整倍体起源,我们称之为 PGT-AO,能够检测易位断点以及核和线粒体的单核苷酸变异和碱基分辨率的插入缺失。