使用基于姿势的深度学习模型对患有和未患有颈源性头痛或颈肩痛的上班族进行分类:一项多中心回顾性研究。

Classifying office workers with and without cervicogenic headache or neck and shoulder pain using posture-based deep learning models: a multicenter retrospective study.

作者信息

Hwang Ui-Jae, Han Junghun, Kwon Oh-Yun, Chu Yu Seong, Yang Sejung

机构信息

Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China.

Department of Precision Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.

出版信息

Front Pain Res (Lausanne). 2025 Jul 7;6:1614143. doi: 10.3389/fpain.2025.1614143. eCollection 2025.

Abstract

OBJECTIVE

To develop and evaluate deep learning models for classifying office workers with and without cervicogenic headache (CH) and/or neck and shoulder pain (NSP), based on habitual sitting posture images.

METHODS

This multicenter, retrospective, observational study analyzed 904 digital images of habitual sitting postures of 531 office workers. Three deep learning models (VGG19, ResNet50, and EfficientNet B5) were trained and evaluated to classify the CH, NSP, and combined CH + NSP. Model performance was assessed using 4-fold cross-validation with metrics including area under the curve (AUC), accuracy (ACC), sensitivity (Sen), specificity (Spe), and F1 score. Statistical significance was evaluated using 95% confidence intervals. Class Activation Mapping (CAM) was used to visualize the model focus areas.

RESULTS

Among 531 office workers (135 with CH, 365 with NSP, 108 with both conditions and 139 control group), ResNet50 achieved the highest performance for CH classification with an AUC of 0.782 (95% CI: 0.770-0.793) and an accuracy of 0.750 (95% CI: 0.731-0.768). NSP classification showed more modest results, with ResNet50 achieving an accuracy of 0.677 (95% CI: 0.640-0.713). In the combined CH + NSP classification, EfficientNet B5 demonstrated the highest AUC of 0.744 (95% CI: 0.647-0.841). CAM analysis revealed distinct focus areas for each condition: the cervical region for CH, the lower body for NSP, and broader neck and trunk regions for combined CH + NSP.

CONCLUSION

Deep learning models show potential for classifying CH and NSP based on habitual sitting posture images, with varying performances across conditions. The ability of these models to detect subtle postural patterns associated with different musculoskeletal conditions suggests their possible applications for early detection and intervention. However, the complex relationship between static posture and musculoskeletal pain underscores the need for a multimodal assessment approach in clinical practice.

摘要

目的

基于习惯性坐姿图像,开发并评估用于对患有和未患有颈源性头痛(CH)和/或颈肩痛(NSP)的上班族进行分类的深度学习模型。

方法

这项多中心、回顾性观察研究分析了531名上班族的904张习惯性坐姿数字图像。训练并评估了三种深度学习模型(VGG19、ResNet50和EfficientNet B5),以对CH、NSP以及合并的CH + NSP进行分类。使用4折交叉验证评估模型性能,评估指标包括曲线下面积(AUC)、准确率(ACC)、灵敏度(Sen)、特异性(Spe)和F1分数。使用95%置信区间评估统计学显著性。使用类激活映射(CAM)可视化模型关注区域。

结果

在531名上班族中(135名患有CH,365名患有NSP,108名同时患有这两种疾病,139名作为对照组),ResNet50在CH分类方面表现最佳,AUC为0.782(95%置信区间:0.770 - 0.793),准确率为0.750(95%置信区间:0.731 - 0.768)。NSP分类结果较为一般,ResNet50的准确率为0.677(95%置信区间:0.640 - 0.713)。在合并的CH + NSP分类中,EfficientNet B5的AUC最高,为0.744(95%置信区间:0.647 - 0.841)。CAM分析揭示了每种情况的不同关注区域:CH的关注区域为颈部,NSP的关注区域为下半身,合并的CH + NSP的关注区域为更广泛的颈部和躯干区域。

结论

深度学习模型显示出基于习惯性坐姿图像对CH和NSP进行分类的潜力,不同情况下性能有所不同。这些模型检测与不同肌肉骨骼疾病相关的细微姿势模式的能力表明它们在早期检测和干预方面可能的应用。然而,静态姿势与肌肉骨骼疼痛之间的复杂关系强调了临床实践中采用多模式评估方法的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb9/12277355/87f07774142b/fpain-06-1614143-g001.jpg

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索