Suppr超能文献

一种在顺序和并行模拟中耦合有限元法和无网格法的数值框架。

A numerical framework coupling finite element and meshless methods in sequential and parallel simulations.

作者信息

Nguyen Van Dung, Kirchhelle Charlotte, Abdollahi Amir, García Grajales Julián Andrés, Li Dongli, Benatia Kamel, Gorbunov Khariton, Bielle Sylvin, Goriely Alain, Jérusalem Antoine

机构信息

Department of Engineering Science, University of Oxford, Oxford, UK.

Department of Plant Sciences, University of Oxford, Oxford, UK.

出版信息

Finite Elem Anal Des. 2023 Jul;219:103927. doi: 10.1016/j.finel.2023.103927.

Abstract

The Finite Element Method (FEM) suffers from important drawbacks in problems involving excessive deformation of elements despite being universally applied to a wide range of engineering applications. While dynamic remeshing is often offered as the ideal solution, its computational cost, numerical noise and mathematical limitations in complex geometries are impeding its widespread use. Meshless methods (MM), however, by not relying on mesh connectivity, circumvent some of these limitations, while remaining computationally more expensive than the classic FEM. These problems in MM can be improved by coupling with FEM in a FEM-MM scheme, in which MM is used within sensitive regions that undergo large deformations while retaining the more efficient FEM for other less distorted regions. Here, we present a numerical framework combining the benefits of FEM and MM to study large deformation scenarios without heavily compromising on computational efficiency. In particular, the latter is maintained through two mechanisms: (1) coupling of FEM and MM discretisation schemes within one problem, which limits MM discretisation to domains that cannot be accurately modelled in FEM, and (2) a simplified MM parallelisation approach which allows for highly efficient speed-up. The proposed approach treats the problem as a quadrature point driven problem, thus making the treatment of the constitutive models, and thus the matrix and vector assembly fully method-agnostic. The MM scheme considers the maximum entropy (max-ent) approximation, in which its weak Kronecker delta property is leveraged in parallel calculations by convexifying the subdomains, and by refining meshes at the boundary in such a way that the higher density of nodes is mainly concentrated within the bulk of the domain. The latter ensures obtaining the Kronecker delta property at the boundary of the MM domain. The results, demonstrated by means of a few applications, show an excellent scalability and a good balance between accuracy and computational cost.

摘要

有限元法(FEM)尽管在广泛的工程应用中得到了普遍应用,但在涉及单元过度变形的问题中存在重要缺陷。虽然动态重新划分网格通常被视为理想的解决方案,但其计算成本、数值噪声以及在复杂几何形状中的数学局限性阻碍了其广泛应用。然而,无网格方法(MM)由于不依赖网格连通性,规避了其中一些限制,同时在计算上仍比经典有限元法更昂贵。通过在有限元 - 无网格方法(FEM - MM)方案中与有限元法耦合,可以改善无网格方法中的这些问题,即在经历大变形的敏感区域内使用无网格方法,而在其他变形较小的区域保留效率更高的有限元法。在此,我们提出一个结合有限元法和无网格方法优点的数值框架,以研究大变形情况,同时在计算效率上不会有太大损失。特别是,通过两种机制保持了计算效率:(1)在一个问题中耦合有限元法和无网格方法离散化方案,这将无网格方法离散化限制在有限元法无法精确建模的区域;(2)一种简化的无网格方法并行化方法,可实现高效加速。所提出的方法将问题视为由积分点驱动的问题,从而使本构模型的处理以及矩阵和向量组装完全与方法无关。无网格方法方案考虑最大熵(max - ent)近似,其中通过对子域进行凸化,并以节点更高密度主要集中在域主体内的方式在边界处细化网格,利用其弱克罗内克δ特性进行并行计算。后者确保在无网格方法域的边界处获得克罗内克δ特性。通过一些应用展示的结果表明,该方法具有出色的可扩展性,并且在精度和计算成本之间取得了良好的平衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd56/7617925/782e1258bf3c/EMS206756-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验