Aydan Alkan Ecem, Metni Houssam, Reiser Patrick, Kupfer Christian, Rocha-Ortiz Juan S, Barabash Anastasia, Batentschuk Miroslaw, Hauch Jens A, Friederich Pascal, Brabec Christoph J
Department of Materials Science and Engineering, Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 7, 91058, Erlangen, Germany.
Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Forschungszentrum Jülich GmbH, Immerwahrstr. 2, 91058, Erlangen, Germany.
Chemistry. 2025 Aug 13;31(45):e00657. doi: 10.1002/chem.202500657. Epub 2025 Jul 22.
Organic small molecules possess significant potential for semitransparent optoelectronic applications due to their tunable optical properties and inherent transparency. However, tailoring these materials is challenging as their optoelectronic properties are sensitive to subtle structural changes, compounded by the existence of over a million potential structural designs. To address these complexities, we present a material discovery workflow that combines literature-based molecule preselection with TDDFT calculations, creating customized small molecule structures with adjustable transparency windows. We identified fifty-four small molecules with a D-π-A-π-D architecture, incorporating nine central (A) and six end (D) units connected by a thiophene π-bridge. Through TDDFT calculations, we determined the theoretical absorption spectra and energy levels of the identified molecules. Ultimately, we synthesized twenty-four molecules that exhibit promising transparency properties by selectively absorbing photons in the ultraviolet (UV) and near-infrared (NIR) regions, with a significant optical transmission band relevant to the visible spectrum, which we will refer to as "optical window". Characterization of the resultant small molecules revealed that six of them, in particular, exhibited selective absorption with the broadest "optical window". We believe that our study will provide valuable insights to establish an effective material discovery workflow for highly transparent conjugated organic small molecules.
有机小分子因其可调节的光学性质和固有的透明性,在半透明光电子应用中具有巨大潜力。然而,由于其光电性质对细微的结构变化敏感,且存在超过百万种潜在的结构设计,定制这些材料具有挑战性。为了解决这些复杂性,我们提出了一种材料发现工作流程,该流程将基于文献的分子预选与含时密度泛函理论(TDDFT)计算相结合,创建具有可调透明窗口的定制小分子结构。我们鉴定出了54种具有D-π-A-π-D结构的小分子,其中包含9个中心(A)单元和6个末端(D)单元,通过噻吩π桥连接。通过TDDFT计算,我们确定了所鉴定分子的理论吸收光谱和能级。最终,我们合成了24种分子,这些分子通过在紫外(UV)和近红外(NIR)区域选择性吸收光子,展现出了有前景的透明特性,具有与可见光谱相关的显著光学透射带,我们将其称为“光学窗口”。对所得小分子的表征表明,其中六种分子尤其表现出具有最宽“光学窗口”的选择性吸收。我们相信,我们的研究将为建立一种用于高透明共轭有机小分子的有效材料发现工作流程提供有价值的见解。