Lythell Emily, Badley Jack, Suardíaz Reynier, Gurr Catherine R, Tooke Catherine L, Hinchliffe Philip, Oliveira A Sofia F, Van der Kamp Marc W, Spencer James, Mulholland Adrian J
Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K.
School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, U.K.
J Chem Inf Model. 2025 Aug 11;65(15):8322-8334. doi: 10.1021/acs.jcim.5c01338. Epub 2025 Jul 22.
The Mobile Colistin Resistance (MCR) phosphoethanolamine (PEtN) transferase is a plasmid-borne enzyme responsible for colistin antibiotic resistance in , the most important antimicrobial-resistant bacterial pathogen worldwide. Bacterial PEtN transferases like MCR comprise periplasmic catalytic and integral membrane domains, with mechanistic understanding largely based on studies of the former and limited information on the full-length enzyme. Previous investigations of a PEtN transferase identified that the catalytic domain can effectively dissociate from the transmembrane component and instead make extensive contacts with the membrane surface. Here, we report molecular dynamics simulations of a model of full-length MCR-1 in a representative membrane comprising 80% of a PEtN donor substrate, palmitoyloleoyl phosphoethanolamine (POPE), that explore the dynamic behavior of the enzyme and the impact upon it of zinc stoichiometry and PEtN addition to the Thr285 acceptor residue. The results identify only limited movement of the two domains relative to one another, and that POPE can bind the likely "resting" state of the enzyme (monozinc with unmodified Thr285) in an orientation compatible with PEtN transfer to Thr285. Stable binding of a second zinc equivalent occurred only with application of restraints and involved Glu116 from the transmembrane domain. Mutation of this residue abolished MCR-1-mediated protection of recombinant from colistin. Our data suggest domain motions in bacterial PEtN transferases to be condition-dependent and support a proposed "ping-pong" reaction mechanism, with the monozinc enzyme competent to undertake the first stage.
移动性黏菌素耐药性(MCR)磷酸乙醇胺(PEtN)转移酶是一种质粒携带的酶,它导致了[细菌名称未给出]对黏菌素抗生素产生耐药性,[细菌名称未给出]是全球最重要的耐药性细菌病原体。像MCR这样的细菌PEtN转移酶包含周质催化结构域和完整膜结构域,对其作用机制的理解主要基于对前者的研究,而关于全长酶的信息有限。先前对一种PEtN转移酶的研究发现,催化结构域可以有效地与跨膜成分分离,转而与膜表面广泛接触。在这里,我们报告了在一个代表性膜中对全长MCR-1模型进行的分子动力学模拟,该膜包含80%的PEtN供体底物棕榈油酰油酰磷酸乙醇胺(POPE),这些模拟探索了该酶的动态行为以及锌化学计量和向苏氨酸285受体残基添加PEtN对其的影响。结果表明,两个结构域之间相对移动有限,并且POPE可以以与PEtN转移到苏氨酸285兼容的方向结合酶的可能“静止”状态(单锌且苏氨酸285未修饰)。仅在施加约束时才发生第二个锌当量的稳定结合,并且涉及跨膜结构域的谷氨酸116。该残基的突变消除了MCR-1介导的对重组[细菌名称未给出]的黏菌素保护作用。我们的数据表明,细菌PEtN转移酶中的结构域运动取决于条件,并支持提出的“乒乓”反应机制,单锌酶能够进行第一阶段反应。