Gupta A, Cooper V S, Zemke A C
Division of Pulmonary, Allergy, Sleep and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
mSphere. 2025 Jul 22:e0038825. doi: 10.1128/msphere.00388-25.
Respiratory infections pose a significant risk for people requiring prolonged mechanical ventilation, yet limited information exists regarding the complex microbiome dynamics of people with tracheostomies during chronic critical illness. Oxford Nanopore Technologies (ONT) long-read sequencing allows for full-length 16S rRNA amplicon sequencing, providing enhanced species-level understanding of the respiratory microbiome. We validated ONT-based FL-16S amplicon sequencing for microbial insights from tracheal aspirates by comparing results with those of Illumina V3-V4 amplicon sequencing. Comparisons were made on a standardized microbial community and tracheal aspirates using multiple DNA extraction kits. Conventional short-read bioinformatic pipelines are suboptimal for processing longer, error-prone ONT reads. The Emu bioinformatics pipeline, specifically designed for ONT FL-16S reads, enhances the accuracy but necessitates validation for tracheal aspirates. In this study, we compared the analysis of FL-16S reads using Emu to the standardized V3-V4 read analysis with QIIME2. Our findings demonstrate that at the same sequencing read depth, FL-16S sequencing analysis with Emu yields comparable alpha and taxonomic diversity metrics, while providing superior species-level resolution compared to V3-V4 amplicon sequencing of tracheal aspirates. Our results show that tracheal aspirates during chronic critical illness are low-diversity samples, with most pathogenic genera represented by a single species. However, members of the oral microbiota and are represented by multiple species.
The role of the respiratory microbiome in shaping outcomes for patients with chronic critical illness undergoing prolonged mechanical ventilation via a tracheostomy remains poorly understood, despite its potential to drive infections and complicate recovery. Current methods, such as short-read 16S rRNA sequencing, lack taxonomic resolution to track pathogens at the species level, limiting clinical insights. Our study addresses this gap by validating ONT-based full-length (FL)-16S rRNA sequencing, a method that achieves species-level taxonomic precision critical for analyzing complex respiratory microbiomes. We benchmarked the microbiome composition of tracheal aspirates from ONT FL-16S rRNA workflows against Illumina V3-V4 data to demonstrate that long-read sequencing delivers comparable diversity profiles while resolving species-level diversity of clinically relevant species and microbes associated with the oral microbiome.
呼吸道感染对需要长期机械通气的患者构成重大风险,但关于慢性危重病期间气管切开患者复杂的微生物群动态的信息有限。牛津纳米孔技术公司(ONT)的长读长测序允许进行全长16S rRNA扩增子测序,从而增强对呼吸道微生物群的物种水平理解。我们通过将结果与Illumina V3-V4扩增子测序结果进行比较,验证了基于ONT的FL-16S扩增子测序用于从气管吸出物中获取微生物见解的有效性。使用多种DNA提取试剂盒对标准化微生物群落和气管吸出物进行了比较。传统的短读长生物信息学流程在处理更长、易出错的ONT读长时并不理想。Emu生物信息学流程是专门为ONT FL-16S读长设计的,提高了准确性,但需要对气管吸出物进行验证。在本研究中,我们将使用Emu对FL-16S读长的分析与使用QIIME2对标准化V3-V4读长的分析进行了比较。我们的研究结果表明,在相同的测序读长深度下,使用Emu进行的FL-16S测序分析产生了可比的α多样性和分类多样性指标,同时与气管吸出物的V3-V4扩增子测序相比,提供了更高的物种水平分辨率。我们的结果表明,慢性危重病期间的气管吸出物是低多样性样本,大多数致病属由单一物种代表。然而,口腔微生物群的成员由多个物种代表。
尽管呼吸道微生物群有可能引发感染并使恢复复杂化,但对于通过气管切开进行长期机械通气的慢性危重病患者,其在塑造预后方面的作用仍知之甚少。当前的方法,如短读长16S rRNA测序,缺乏在物种水平追踪病原体的分类分辨率,限制了临床见解。我们的研究通过验证基于ONT的全长(FL)-16S rRNA测序来填补这一空白,该方法实现了对分析复杂呼吸道微生物群至关重要的物种水平分类精度。我们将ONT FL-16S rRNA工作流程中气管吸出物的微生物群组成与Illumina V3-V4数据进行了基准比较,以证明长读长测序在解析临床相关物种和与口腔微生物群相关的微生物的物种水平多样性的同时,提供了可比的多样性概况。