Suppr超能文献

NiOOH@β-Ni(Fe)OOH 的相锁定同时重构以实现高电流密度下稳健的析氧反应

Phase Locking of NiOOH@β-Ni(Fe)OOH Reconstructed Simultaneously for Robust Oxygen Evolution at High Current Density.

作者信息

Li Ximin, Ruan Min, Shen Yue, Wen Ming, Li Zhiwen, Yin Hongxia, Chen Feng, Cheng Yang, Lei Pengxiang, Qian Lihua

机构信息

School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.

Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi 435003, China.

出版信息

ACS Appl Mater Interfaces. 2025 Aug 6;17(31):44562-44572. doi: 10.1021/acsami.5c10095. Epub 2025 Jul 22.

Abstract

Electrochemical oxygen evolution reaction usually induces the reconstruction of NiFe layered double hydroxides (LDH) into β-Ni(Fe)OOH, which further undergoes detrimental overcharging into γ-Ni(Fe)OOH with low activity under high-potential and high-current density conditions. In this study, simultaneous reconstruction of the NiMoO@NiFe LDH (NMO@NFL) into NiOOH@β-Ni(Fe)OOH enables maintaining the activity and stability of β-Ni(Fe)OOH. An ultralow overpotential of 203 mV is required to achieve a current density of 10 mA cm. In the anion exchange membrane water electrolyzer(AEMWE), a current density of 1 A cm is achievable at 1.81 V. The NiOOH@β-Ni(Fe)OOH demonstrates significantly enhanced stability with a degradation rate of merely 1.86 mV h at 1 A cm, which is over 9.5 times lower than that of the γ-Ni(Fe)OOH phase reconstructed from individual NiFe LDH (17.7 mV h). In situ Raman spectroscopy and density functional theory (DFT) calculation demonstrate that the heterogeneous interface effectively suppresses the overcharging of β-Ni(Fe)OOH into γ-Ni(Fe)OOH through interfacial electron donation. These findings provide crucial insights into achieving phase locking and improving stability of simultaneously reconstructed heterogeneous materials, presenting a reliable pathway for the further development of efficient and durable electrocatalysts.

摘要

电化学析氧反应通常会诱导镍铁层状双氢氧化物(LDH)重构为β-Ni(Fe)OOH,在高电位和高电流密度条件下,β-Ni(Fe)OOH会进一步发生有害的过充电,转变为活性较低的γ-Ni(Fe)OOH。在本研究中,将NiMoO@NiFe LDH(NMO@NFL)同时重构为NiOOH@β-Ni(Fe)OOH能够保持β-Ni(Fe)OOH的活性和稳定性。实现10 mA cm的电流密度需要203 mV的超低过电位。在阴离子交换膜水电解槽(AEMWE)中,在1.81 V时可实现1 A cm的电流密度。NiOOH@β-Ni(Fe)OOH表现出显著增强的稳定性,在1 A cm时降解速率仅为1.86 mV h,比由单个NiFe LDH重构的γ-Ni(Fe)OOH相(17.7 mV h)低9.5倍以上。原位拉曼光谱和密度泛函理论(DFT)计算表明,异质界面通过界面电子给予有效地抑制了β-Ni(Fe)OOH向γ-Ni(Fe)OOH的过充电。这些发现为实现同时重构的异质材料的相锁定和提高稳定性提供了关键见解,为高效耐用的电催化剂的进一步发展提供了可靠途径。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验