Iusupovskaia E, Isaev N, Antonian A, Boromangnaeva A K, Kuzmin E, Piavchenko G, Konovalov A, Pavlova G, Samoylenkova N, Timashev P, Telyshev D, Ulasov I, Markov Aleksandr
Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, 8/2 Trubetskaya Str, Moscow, 119991, Russian Federation.
Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation.
J Neurooncol. 2025 Jul 22. doi: 10.1007/s11060-025-05171-1.
Drug resistance is a major challenge in the treatment of tumor diseases, especially in glioblastoma (GBM), where temozolomide (TMZ) plays a critical role. However, the development of resistance to TMZ occurs rapidly in more than half of the patients who initially respond to the drug. This highlights the need for novel approaches to overcome drug resistance and improve therapeutic outcomes in GBM treatment.
In our study, we combine TMZ treatment with wireless optoelectronics using advanced multilayered organic semiconductor (MOS) devices. These devices consist of a 200 nm thick stack of metal and p-n semiconducting organic nanocrystals. When illuminated in physiological solutions, these MOS devices charge up and convert light pulses into localized displacement currents, which are strong enough to electrically stimulate tumor cells at safe light intensities. Importantly, the freestanding MOS devices require no external wiring or bias and remain stable under physiological conditions. The semiconductor layers are created from common, non-toxic pigments using simple, scalable deposition methods.
Our results demonstrate that this combination of TMZ and optoelectronic stimulation significantly enhances apoptosis in tumor cells, thereby improving the effectiveness of TMZ in treating glioblastoma.
his research suggests that the integration of wireless optoelectronic stimulation with TMZ treatment offers a promising strategy to overcome drug resistance in GBM. The use of MOS devices enhances the therapeutic effect of TMZ and could lead to better treatment outcomes for patients with glioblastoma.
耐药性是肿瘤疾病治疗中的一个重大挑战,尤其是在胶质母细胞瘤(GBM)中,替莫唑胺(TMZ)在其中起着关键作用。然而,超过一半最初对该药物有反应的患者会迅速出现对TMZ的耐药性。这凸显了需要新的方法来克服耐药性并改善GBM治疗的疗效。
在我们的研究中,我们使用先进的多层有机半导体(MOS)器件将TMZ治疗与无线光电子学相结合。这些器件由一层200纳米厚的金属和p-n半导体有机纳米晶体堆叠而成。当在生理溶液中受到光照时,这些MOS器件会充电并将光脉冲转换为局部位移电流,这些电流在安全的光强度下足以电刺激肿瘤细胞。重要的是,独立的MOS器件不需要外部布线或偏置,并且在生理条件下保持稳定。半导体层由常见的无毒颜料使用简单、可扩展的沉积方法制成。
我们的结果表明,TMZ与光电子刺激的这种组合显著增强了肿瘤细胞的凋亡,从而提高了TMZ治疗胶质母细胞瘤的有效性。
这项研究表明,无线光电子刺激与TMZ治疗的整合为克服GBM中的耐药性提供了一种有前景的策略。MOS器件的使用增强了TMZ的治疗效果,并可能为胶质母细胞瘤患者带来更好的治疗结果。