Tachibana Ryo, Akema Rino, Yoshihara Akiko, Ujihara Chihiro, Nishida Kaisei, Ri Shunshu, Yamagami Ayumi, Miyakawa Takuya, Kobayashi Koichi, Tanaka Ryouichi, Nakano Takeshi
Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
Department of Biology, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku,Sakai, Osaka 599-8531, Japan.
Plant Cell. 2025 Jul 22. doi: 10.1093/plcell/koaf180.
Light is an essential energy source for plants, but it can cause harmful photooxidative damage that induces cell death. When dark-germinated plants are exposed to the light, etioplasts differentiate into chloroplasts, converting protochlorophyllide (Pchlide) into chlorophyll, while excessive free Pchlide accumulation in etioplasts causes reactive oxygen species (ROS) generation and cell death under light conditions. Despite this knowledge, the molecular mechanisms by which dark-germinated plants adapt to the light environment via transcriptional regulation of chlorophyll biosynthesis remain unclear. We previously identified BRZ-INSENSITIVE-PALE GREEN 4 (BPG4) as a light-inducible chloroplast homeostasis factor. Here, we identified the BPG4 paralog BPG4 HOMOLOGOUS GENE 2 (BGH2) as a nucleus-localized plastid regulator required for light adaptation in Arabidopsis thaliana. Dark-inducible BGH2 interacts with GOLDEN2-LIKE 1 (GLK1) and GLK2, master transcription factors regulating chlorophyll biosynthesis. This interaction suppresses excessive photosynthesis-associated nuclear gene (PhANG) expression, avoids Pchlide overaccumulation in the dark, prevents ROS generation, and promotes healthy cotyledon greening during de-etiolation. BPG4 and BGH2 expression is regulated by GLK and PHYTOCHROME-INTERACTING FACTOR transcription factors under light and dark conditions. Overall, our findings suggest that BGH2 plays an essential role in fine-tuning chlorophyll biosynthesis and etioplast homeostasis by inhibiting GLK transcriptional activity and excessive PhANG expression in the dark.
光是植物必需的能量来源,但它会导致有害的光氧化损伤,进而诱导细胞死亡。当黑暗中萌发的植物暴露于光照下时,黄化质体分化为叶绿体,将原叶绿素酸酯(Pchlide)转化为叶绿素,而黄化质体中过量的游离Pchlide积累会在光照条件下导致活性氧(ROS)生成和细胞死亡。尽管有这些认识,但黑暗中萌发的植物通过叶绿素生物合成的转录调控来适应光照环境的分子机制仍不清楚。我们之前鉴定出BRZ不敏感淡绿色4(BPG4)是一种光诱导的叶绿体稳态因子。在这里,我们鉴定出BPG4的旁系同源基因BPG4同源基因2(BGH2)是拟南芥光适应所需的定位于细胞核的质体调节因子。黑暗诱导的BGH2与调控叶绿素生物合成的主要转录因子类金色2样蛋白1(GLK1)和GLK2相互作用。这种相互作用抑制了与光合作用相关的核基因(PhANG)的过度表达,避免了黑暗中Pchlide的过度积累,防止了ROS的产生,并促进了脱黄化过程中健康子叶的变绿。BPG4和BGH2的表达在光照和黑暗条件下受GLK和光敏色素相互作用因子转录因子的调控。总体而言,我们的研究结果表明,BGH2通过在黑暗中抑制GLK转录活性和PhANG的过度表达,在微调叶绿素生物合成和黄化质体稳态中发挥着重要作用。