Kolomiiets Oleksandr, Stelmakh Andriy, Rajan Amrutha, Sabisch Sebastian, Rainò Gabriele, Baumketner Andrij, Kovalenko Maksym V, Bodnarchuk Maryna I
Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland.
Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, Zürich CH-8093, Switzerland.
ACS Nano. 2025 Aug 5;19(30):27860-27872. doi: 10.1021/acsnano.5c09117. Epub 2025 Jul 22.
The ongoing quest for improved capping ligands for lead halide perovskite nanocrystals (LHP NCs) is fueled by the immense potential of these emitters as classical and quantum light sources. Herein, we introduce a structurally diverse library of long-chain trialkylsulfonium ligands that provide robust surface passivation of CsPbBr and MAPbBr NCs, achieving photoluminescence quantum yields approaching 90% for cationic and exceeding 90% for zwitterionic ligands. Classical force-field molecular dynamics simulations assess the trialkylsulfonium ligand headgroup as a close analogue of a frequently used quaternary ammonium headgroup in terms of its binding to the perovskite surface. When comparing trialkylsulfonium ligands that differ by the number and positions of long alkyl chains, the conformational flexibility of the ligand was found to play a dominant role in determining the ligand binding strength, surpassing the influence of headgroup geometry or substitution. Guided by this fundamental understanding, we rationally designed sulfonium sulfonate zwitterionic ligands that form robust colloids, also under extreme dilution. The resulting NCs exhibit a suppressed blinking rate (on-time fraction ∼85%) and high single-photon purity ( (0) = 0.12). Furthermore, applying "entropic" sulfonium ligands facilitates the stabilization of highly concentrated NC colloids (up to 1.1 g of inorganic mass per mL). These findings benchmark sulfonium-based ligands as practically applicable for diverse applications of LHP NCs, including quantum photonics and downconversion layers for displays.
卤化铅钙钛矿纳米晶体(LHP NCs)作为经典和量子光源具有巨大潜力,这推动了人们对改进其封端配体的持续探索。在此,我们引入了一个结构多样的长链三烷基锍配体库,这些配体为CsPbBr和MAPbBr纳米晶体提供了强大的表面钝化作用,阳离子配体的光致发光量子产率接近90%,两性离子配体则超过90%。经典力场分子动力学模拟评估了三烷基锍配体的头基与钙钛矿表面结合时,是常用季铵头基的紧密类似物。在比较长烷基链数量和位置不同的三烷基锍配体时,发现配体的构象灵活性在决定配体结合强度方面起主导作用,超过了头基几何形状或取代的影响。基于这一基本认识,我们合理设计了磺酸锍两性离子配体,即使在极度稀释的情况下也能形成稳定的胶体。所得纳米晶体的闪烁速率降低(开启时间分数约为85%)且单光子纯度高(g(0)=0.12)。此外,应用“熵”锍配体有助于稳定高浓度的纳米晶体胶体(每毫升高达1.1克无机质量)。这些发现将锍基配体作为切实适用于LHP NCs多种应用的基准,包括量子光子学和显示器的下转换层。