Jassar Sunam, Zhou Zili, Leonard Sierra, Youssef Alaa, Probyn Linda, Kulasegaram Kulamakan, Adams Scott J
Department of Medical Imaging, University of Toronto, Toronto, Canada (S.J., L.P.).
College of Medicine, University of Saskatchewan, Saskatoon, Canada (Z.Z., S.L., S.J.A.).
Acad Radiol. 2025 Sep;32(9):5624-5634. doi: 10.1016/j.acra.2025.06.044. Epub 2025 Jul 21.
The integration of artificial intelligence (AI) in radiology may necessitate refinement of the competencies expected of radiologists. There is currently a lack of understanding on what competencies radiology residency programs should ensure their graduates attain related to AI. This study aimed to identify what knowledge, skills, and attitudes are important for radiologists to use AI safely and effectively in clinical practice.
Following Arksey and O'Malley's methodology, a scoping review was conducted by searching electronic databases (PubMed, Embase, Scopus, and ERIC) for articles published between 2010 and 2024. Two reviewers independently screened articles based on the title and abstract and subsequently by full-text review. Data were extracted using a standardized form to identify the knowledge, skills, and attitudes surrounding AI that may be important for its safe and effective use.
Of 5920 articles screened, 49 articles met inclusion criteria. Core competencies were related to AI model development, evaluation, clinical implementation, algorithm bias and handling discrepancies, regulation, ethics, medicolegal issues, and economics of AI. While some papers proposed competencies for radiologists focused on technical development of AI algorithms, other papers centered competencies around clinical implementation and use of AI.
Current AI educational programming in radiology demonstrates substantial heterogeneity with a lack of consensus on the knowledge, skills, and attitudes for the safe and effective use of AI in radiology. Further research is needed to develop consensus on the core competencies for radiologists to safely and effectively use AI to support the integration of AI training and assessment into residency programs.
人工智能(AI)在放射学中的整合可能需要对放射科医生所需的能力进行完善。目前,对于放射科住院医师培训项目应确保其毕业生具备哪些与AI相关的能力,人们还缺乏了解。本研究旨在确定放射科医生在临床实践中安全有效地使用AI所需的知识、技能和态度。
按照阿克西和奥马利的方法,通过检索电子数据库(PubMed、Embase、Scopus和ERIC),对2010年至2024年发表的文章进行了范围综述。两名评审员先根据标题和摘要独立筛选文章,随后进行全文评审。使用标准化表格提取数据,以确定围绕AI的、对其安全有效使用可能重要的知识、技能和态度。
在筛选的5920篇文章中,49篇符合纳入标准。核心能力与AI模型开发、评估、临床应用、算法偏差及处理差异、监管、伦理、法医学问题以及AI的经济学有关。虽然一些论文提出的放射科医生能力侧重于AI算法的技术开发,但其他论文则围绕AI的临床应用和使用来确定能力。
目前放射学中的AI教育规划存在很大异质性,对于在放射学中安全有效地使用AI所需的知识、技能和态度缺乏共识。需要进一步研究,以就放射科医生安全有效使用AI的核心能力达成共识,从而支持将AI培训和评估纳入住院医师培训项目。