Zhang Yuzhe, Higashino Tomohiro, Namikawa Keigo, Osterloh W Ryan, Imahori Hiroshi
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Kyoto 606-8501 Japan.
Chem Sci. 2025 Jul 21. doi: 10.1039/d5sc03537f.
Porphyrin dyes have garnered significant attention as promising photosensitizers for dye-sensitized solar cells (DSSCs) due to their exceptional light-harvesting capabilities and remarkable power conversion efficiencies (PCEs) when paired with cobalt(ii/iii) complex-based redox shuttles. Meanwhile, copper(i/ii) complexes have emerged as new generation redox shuttles, achieving impressive open-circuit voltages ( ) exceeding 1.0 V. However, porphyrin-based DSSCs using copper(i/ii) redox shuttles have struggled with low-to-moderate PCEs, primarily due to insufficient driving forces for the dye regeneration process. In this study, we introduce FL1, a novel porphyrin dye featuring a fluorene moiety with reduced electron-donating properties, designed to ensure a sufficient driving force for dye regeneration using copper(i/ii) complexes. Under optimized conditions, DSSC incorporating FL1 with a copper(i/ii) complex utilizing 4,4'-dimethoxy-6,6'-dimethyl-2,2'-bipyridine [Cu(2MeOby)][TFSI]/[Cu(2MeOby)][TFSI] achieved a notable PCE of 8.30% with a of 0.890 V. Furthermore, our investigation into counterion effects revealed that DSSCs employing [Cu(2MeOby)][PF]/[Cu(2MeOby)][PF] as a redox shuttle delivered the highest PCE of 9.06% with a of 0.900 V, attributed to its superior diffusion coefficient. Finally, co-sensitized DSSCs featuring FL1 and XY1B achieved an outstanding PCE of 10.9%, while retaining a high of 0.945 V, setting a new benchmark efficiency for porphyrin-based DSSCs utilizing copper(i/ii) redox shuttles. This breakthrough highlights the immense potential of further refining porphyrin dyes and copper(i/ii) redox shuttles through energy-level engineering to optimize the driving force for dye regeneration and propel advancements in DSSC technology.
卟啉染料因其卓越的光捕获能力以及与基于钴(Ⅱ/Ⅲ)配合物的氧化还原穿梭体配对时显著的功率转换效率(PCE),作为染料敏化太阳能电池(DSSC)有前景的光敏剂而备受关注。同时,铜(Ⅰ/Ⅱ)配合物已成为新一代氧化还原穿梭体,实现了超过1.0 V的令人印象深刻的开路电压( )。然而,使用铜(Ⅰ/Ⅱ)氧化还原穿梭体的基于卟啉的DSSC在低至中等的PCE方面存在困难,主要是由于染料再生过程的驱动力不足。在本研究中,我们引入了FL1,一种具有芴基且供电子性能降低的新型卟啉染料,旨在确保使用铜(Ⅰ/Ⅱ)配合物进行染料再生时有足够的驱动力。在优化条件下,将FL1与利用4,4'-二甲氧基-6,6'-二甲基-2,2'-联吡啶[Cu(2MeOby)][TFSI]/[Cu(2MeOby)][TFSI]的铜(Ⅰ/Ⅱ)配合物结合的DSSC实现了8.30%的显著PCE,开路电压为0.890 V。此外,我们对抗衡离子效应的研究表明,采用[Cu(2MeOby)][PF]/[Cu(2MeOby)][PF]作为氧化还原穿梭体的DSSC提供了9.06%的最高PCE,开路电压为 0.900 V,这归因于其优越的扩散系数。最后,具有FL1和XY1B的共敏化DSSC实现了10.9%的出色PCE,同时保持了0.945 V的高开路电压,为使用铜(Ⅰ/Ⅱ)氧化还原穿梭体的基于卟啉的DSSC设定了新的基准效率。这一突破凸显了通过能级工程进一步优化卟啉染料和铜(Ⅰ/Ⅱ)氧化还原穿梭体以优化染料再生驱动力并推动DSSC技术进步的巨大潜力。