Suppr超能文献

纪念斯隆凯特琳癌症中心列线图在瑞典预测前列腺癌特异性死亡中的应用:一项基于人群的队列研究

Adaption of the Memorial Sloan Kettering Cancer Center Nomograms for the Prediction of Prostate Cancer-specific Death in Sweden: A Population-based Cohort Study.

作者信息

Zelic Renata, Westerberg Marcus, Stattin Pär, Garmo Hans, Richiardi Lorenzo, Akre Olof, Pettersson Andreas

机构信息

Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.

Department of Pelvic Cancer, Cancer Theme, Karolinska University Hospital, Stockholm, Sweden.

出版信息

Eur Urol Open Sci. 2025 Jul 14;78:41-50. doi: 10.1016/j.euros.2025.06.003. eCollection 2025 Aug.

Abstract

BACKGROUND AND OBJECTIVE

Prognostication is a cornerstone of the clinical management of prostate cancer. This study aims to update the pre- and postoperative Memorial Sloan Kettering Cancer Center (MSKCC) nomograms for the prediction of 10-yr prostate cancer-specific mortality in the competing risk setting in Sweden, and to evaluate the added value of comorbidities.

METHODS

A cohort study was conducted including all men in the National Prostate Cancer Register of Sweden diagnosed with localised prostate cancer in 2007-2020, who underwent radical prostatectomy. Follow-up was until December 31, 2022. We used cause-specific Cox proportional hazard models to obtain the cumulative incidence of prostate cancer-specific and other-cause mortality. The models were validated in terms of discrimination (concordance [C] index) and calibration by internal-external validation in six Swedish health care regions and by bootstrapping ( = 500).

KEY FINDINGS AND LIMITATIONS

The cohort included 31 106 men, of whom 629 died from prostate cancer and 2415 died from other causes during a median follow-up of 8.3 yr (interquartile range: 5.2, 11.8). Comorbidities added more value to the other-cause mortality model than to the prostate cancer-specific mortality model, and were included in all models. Both the preoperative and the postoperative model showed high discrimination for prostate cancer-specific death (optimism-corrected C-index: 0.81 and 0.87, respectively), but not for other-cause mortality (0.67, both models). All models were well calibrated, with minimal overestimation at the higher range of predicted cumulative incidences for the preoperative, but not for the postoperative, model.

CONCLUSIONS AND CLINICAL IMPLICATIONS

The updated MSKCC nomograms performed well in terms of discrimination and calibration, and can be used in clinical practice in Sweden. In this study, comorbidity added minimal prognostic value for predicting prostate cancer-specific mortality. External validation is advised for application in other populations.

PATIENT SUMMARY

Prognostication is a cornerstone in the clinical management of prostate cancer. In this study, we adapted the best preforming risk classification system, the pre- and postoperative Memorial Sloan Kettering Cancer Center nomograms, for the prediction of prostate cancer-specific death in Swedish setting. The adapted models perform well and can be applied directly to Swedish men with prostate cancer.

摘要

背景与目的

预后评估是前列腺癌临床管理的基石。本研究旨在更新纪念斯隆凯特琳癌症中心(MSKCC)术前和术后列线图,以预测瑞典竞争风险环境下10年前列腺癌特异性死亡率,并评估合并症的附加价值。

方法

进行了一项队列研究,纳入瑞典国家前列腺癌登记处2007年至2020年诊断为局限性前列腺癌并接受根治性前列腺切除术的所有男性。随访至2022年12月31日。我们使用特定病因的Cox比例风险模型来获得前列腺癌特异性死亡率和其他病因死亡率的累积发生率。通过在瑞典六个医疗保健地区进行内部-外部验证以及自抽样法(=500),对模型的区分度(一致性[C]指数)和校准进行了验证。

主要发现与局限性

该队列包括31106名男性,在中位随访8.3年(四分位间距:5.2,11.8)期间,其中629人死于前列腺癌,2415人死于其他原因。合并症对其他病因死亡率模型的附加价值高于对前列腺癌特异性死亡率模型的附加价值,且所有模型均纳入了合并症。术前和术后模型对前列腺癌特异性死亡均显示出较高的区分度(乐观校正C指数:分别为0.81和0.87),但对其他病因死亡率的区分度较低(两个模型均为0.67)。所有模型校准良好,术前模型在预测累积发生率较高范围时高估程度最小,但术后模型并非如此。

结论与临床意义

更新后的MSKCC列线图在区分度和校准方面表现良好,可在瑞典临床实践中使用。在本研究中,合并症对预测前列腺癌特异性死亡率的预后价值极小。建议在其他人群中应用时进行外部验证。

患者总结

预后评估是前列腺癌临床管理的基石。在本研究中,我们采用了表现最佳的风险分类系统,即术前和术后纪念斯隆凯特琳癌症中心列线图,以预测瑞典环境下前列腺癌特异性死亡。调整后的模型表现良好,可直接应用于瑞典前列腺癌男性患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6375/12281531/10082f884a66/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验