Suppr超能文献

用于预测印度前列腺癌患者队列中淋巴结侵犯的布里甘蒂和纪念斯隆凯特琳癌症中心列线图的外部验证

External Validation of Briganti and Memorial Sloan-Kettering Cancer Centre Nomograms for Predicting Lymph Node Invasion in the Indian Cohort of Patients with Prostate Cancer.

作者信息

Agrawal Mayank, Shah Milap, Carbin Danny Darlington, Ahluwalia Puneet, Gautam Gagan, Sharma Gopal

机构信息

Department of Urologic Oncology, Max Institute of Cancer Care, Saket, New Delhi, India.

出版信息

Indian J Surg Oncol. 2025 Apr;16(2):450-455. doi: 10.1007/s13193-023-01732-w. Epub 2023 Mar 4.

Abstract

Briganti and Memorial Sloan-Kettering Cancer Centre (MSKCC) nomograms are the two commonly used models for predicting lymph node invasion (LNI) in patients with prostate cancer. However, they have never been validated in the Indian cohort of patients with prostate cancer. Hence, with this study, we aimed to externally validate Briganti (2012) and MSKCC nomograms in our dataset of patients who underwent robot-assisted radical prostatectomy (RARP). We reviewed our prospectively maintained RARP data to predict the probability of LNI using Briganti (2012) and MSKCC nomograms. The two models were validated by receiver operating characteristic (ROC) curve analysis, calibration plots, and decision curve analysis (DCA). Of the 482 patients included in this study, 127 (26.3%) had lymph nodal metastasis. ROC analysis revealed an area under the curve of 0.75 (0.70-0.80) and 0.76 (0.71-0.80) for the Briganti and MSKCC nomograms, respectively, in predicting LNI. Calibration plots for both Briganti and MSKCC nomograms showed under or overestimation at different predicted probabilities. DCA showed a net clinical benefit of both models at a threshold probability of 10%. Using 5% cut-off for threshold for lymph node dissection, Briganti nomogram would have sensitivity, specificity, PPV, and NPV of (126/127) 99.2%, (14/355) 3.9%, (126/467) 26.9%, and (14/15) 93.3%, respectively. Using the same cut-off, MSKCC nomogram would have sensitivity, specificity, PPV, and NPV of (126/127) 99.2%, (56/355) 15.7%, (126/425) 29%, and (56/57) 98%, respectively. With this study, we independently validated Briganti and MSKCC nomograms for predicting LNI in the Indian cohort of patients with prostate cancer.

摘要

布里甘蒂(Briganti)模型和纪念斯隆凯特琳癌症中心(MSKCC)列线图是预测前列腺癌患者淋巴结侵犯(LNI)的两种常用模型。然而,它们从未在印度前列腺癌患者队列中得到验证。因此,在本研究中,我们旨在对我们接受机器人辅助根治性前列腺切除术(RARP)的患者数据集中的布里甘蒂(2012年)模型和MSKCC列线图进行外部验证。我们回顾了我们前瞻性收集的RARP数据,以使用布里甘蒂(2012年)模型和MSKCC列线图预测LNI的概率。通过受试者工作特征(ROC)曲线分析、校准图和决策曲线分析(DCA)对这两种模型进行验证。本研究纳入的482例患者中,127例(26.3%)有淋巴结转移。ROC分析显示,在预测LNI时,布里甘蒂模型和MSKCC列线图的曲线下面积分别为0.75(0.70 - 0.80)和0.76(0.71 - 0.80)。布里甘蒂模型和MSKCC列线图的校准图在不同预测概率下均显示出低估或高估。DCA显示,在阈值概率为10%时,两种模型均具有净临床获益。以5%作为淋巴结清扫阈值,布里甘蒂列线图的敏感性、特异性、阳性预测值和阴性预测值分别为(126/127)99.2%、(14/355)3.9%、(126/467)26.9%和(14/15)93.3%。使用相同的阈值,MSKCC列线图的敏感性、特异性、阳性预测值和阴性预测值分别为(126/127)99.2%、(56/355)15.7%、(126/425)29%和(56/57)98%。通过本研究,我们独立验证了布里甘蒂模型和MSKCC列线图在印度前列腺癌患者队列中预测LNI的有效性。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验