Suppr超能文献

胶质母细胞瘤中的血管生成与耐药机制:靶向替代血管生成途径以克服治疗耐药性

Angiogenesis and Resistance Mechanisms in Glioblastoma: Targeting Alternative Vascularization Pathways to Overcome Therapy Resistance.

作者信息

Beylerli Ozal, Gareev Ilgiz, Musaev Elmar, Ilyasova Tatiana, Roumiantsev Sergey, Chekhonin Vladimir

机构信息

Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia.

Department of Oncology, Sechenov First Moscow State Medical University, Moscow, 119435, Russian Federation.

出版信息

Curr Pharm Des. 2025 Jul 22. doi: 10.2174/0113816128367551250703122830.

Abstract

INTRODUCTION

Glioblastoma (GBM), the most aggressive form of primary brain tumor in adults, remains a significant clinical challenge due to its high recurrence and poor prognosis. Characterized by rapid growth, invasiveness, and resistance to therapy, GBM relies on a sophisticated vascular network to sustain its progression. Angiogenesis, the process of forming new blood vessels, is central to meeting the metabolic demands of the tumor. To address this issue, there is a growing consensus on the need for multi-pronged therapeutic strategies that not only inhibit angiogenesis but also disrupt alternative neovascular mechanisms. Promising approaches include combining anti-angiogenic drugs with agents targeting pathways like neurogenic locus notch homolog protein (NOTCH), Wnt, and C-X-C motif chemokine receptor 4 (CXCR4)/stromal cellderived factor 1 alpha (SDF-1α) to impede vessel co-option, VM, and GSC trans-differentiation.

METHODS

The search strategy consisted of using material from the PubMed data, focusing on key terms such as: "angiogenesis", "glioblastoma", "glioma", "oncogenesis", "anti-VEGF treatment", "signaling pathways", "hypoxia", "vessels", "resistance", and "neurosurgery.

RESULTS

Аs a result of the analysis of existing recent studies, GBM exhibits an adaptive capacity to utilize various neovascular mechanisms, including vessel co-option, vasculogenic mimicry (VM), and the transdifferentiation of glioma stem cells (GSCs) into vascular-like structures, to circumvent traditional antiangiogenic therapies. Initial successes with anti-angiogenic treatments targeting vascular endothelial growth factor (VEGF) showed improvements in progression-free survival. Still, they failed to significantly impact the overall survival due to the tumor's activation of compensatory pathways. Hypoxia, a critical driver of angiogenesis, stabilizes hypoxia-inducible factors (HIF-1α and HIF-2α), which upregulate pro-angiogenic gene expression and facilitate adaptive neovascular responses. These adaptations include vessel co-option, where tumor cells utilize pre-existing vasculature, and VM, where tumor cells form endothelial-like channels independent of typical angiogenesis. Moreover, the role of GSCs in forming new vascular structures through transdifferentiation further complicates treatment, enabling the tumor to maintain its blood supply even when VEGF pathways are blocked.

DISCUSSION

This review highlights the necessity for comprehensive and targeted treatment strategies that encompass the full spectrum of neovascular mechanisms in GBM. Such strategies are crucial for developing more effective therapies that can extend patient survival and improve overall treatment outcomes.

CONCLUSION

To address the challenge of understanding tumor angiogenesis and ways to inhibit it, there is a growing consensus on the need for multifaceted therapeutic strategies that not only suppress angiogenesis but also disrupt alternative neovascular mechanisms. The most successfull approaches include the use of antiangiogenic drugs in combination with agents targeting pathways such as the neurogenic locus of the notch homolog protein (NOTCH), Wnt, and C-X-C receptor chemokine motif 4 (CXCR4)/stromal cell-derived factor 1 alpha (SDF-1α) aiming to inhibit vessel co-option, VM, and GSC transdifferentiation.

摘要

引言

胶质母细胞瘤(GBM)是成人原发性脑肿瘤中最具侵袭性的形式,由于其高复发率和不良预后,仍然是一个重大的临床挑战。GBM的特点是生长迅速、具有侵袭性且对治疗有抗性,它依赖于复杂的血管网络来维持其进展。血管生成,即形成新血管的过程,对于满足肿瘤的代谢需求至关重要。为了解决这个问题,人们越来越一致地认为需要多管齐下的治疗策略,这些策略不仅要抑制血管生成,还要破坏其他新生血管机制。有前景的方法包括将抗血管生成药物与靶向神经源性Notch同源蛋白(NOTCH)、Wnt和C-X-C基序趋化因子受体4(CXCR4)/基质细胞衍生因子1α(SDF-1α)等途径的药物联合使用,以阻止血管共选择、血管生成拟态(VM)和胶质瘤干细胞(GSC)转分化。

方法

检索策略包括使用来自PubMed数据的材料,重点关注“血管生成”、“胶质母细胞瘤”、“胶质瘤”、“肿瘤发生”、“抗VEGF治疗”、“信号通路”、“缺氧”、“血管”、“抗性”和“神经外科”等关键词。

结果

通过对现有近期研究的分析,GBM表现出利用各种新生血管机制的适应能力,包括血管共选择、血管生成拟态(VM)以及胶质瘤干细胞(GSC)向血管样结构的转分化,以规避传统的抗血管生成疗法。针对血管内皮生长因子(VEGF)的抗血管生成治疗最初取得了进展,无进展生存期有所改善。然而,由于肿瘤激活了补偿途径,它们未能显著影响总生存期。缺氧是血管生成的关键驱动因素,它使缺氧诱导因子(HIF-1α和HIF-2α)稳定下来,上调促血管生成基因的表达并促进适应性新生血管反应。这些适应包括血管共选择,即肿瘤细胞利用预先存在的脉管系统;以及VM,即肿瘤细胞形成独立于典型血管生成的内皮样通道。此外,GSC通过转分化形成新血管结构的作用使治疗更加复杂,即使VEGF途径被阻断,肿瘤也能够维持其血液供应。

讨论

本综述强调了全面且有针对性的治疗策略的必要性,这些策略应涵盖GBM中新生血管机制的全谱。此类策略对于开发能够延长患者生存期并改善总体治疗结果的更有效疗法至关重要。

结论

为应对理解肿瘤血管生成及抑制方法的挑战,人们越来越一致地认为需要多方面的治疗策略,这些策略不仅要抑制血管生成,还要破坏其他新生血管机制。最成功的方法包括将抗血管生成药物与靶向神经源性Notch同源蛋白(NOTCH)、Wnt和C-X-C受体趋化因子基序4(CXCR4)/基质细胞衍生因子1α(SDF-1α)等途径的药物联合使用,旨在抑制血管共选择、VM和GSC转分化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验