文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Path-MGCN:一种基于通路活性的多视图图卷积网络,用于确定空间域。

Path-MGCN: a pathway activity-based multi-view graph convolutional network for determining spatial domains.

作者信息

Zhou Qirui, Li Chaowen, Chen Chao, Gu Songqing, Sun Weijun, Zhang Zongmeng, Cai Yishan, Huang Yonghui, Liu Hongtao, Yang Chao, Chen Xin

机构信息

School of Automation, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China.

Intelligent Systems and Optimization Integration, School of Automation, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China.

出版信息

Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf365.


DOI:10.1093/bib/bbaf365
PMID:40698867
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12284772/
Abstract

Spatial transcriptomics (ST) comprehensively measure the gene expression profiles while preserving the spatial information. Accumulated computational frameworks have been proposed to identify spatial domains, one of the fundamental tasks of ST data analysis, to understand the tissue architecture. However, current methods often overlook pathway-level functional context and struggle with data sparsity. Therefore, we develop Path-MGCN, a multi-view graph convolutional network (GCN) with attention mechanism, which integrates pathway information. We first calculate spot-level pathway activity scores via gene set variation analysis from gene expression and construct distinct adjacency graphs representing spatial and functional proximity. A multi-view GCN learns spatial, pathway, and shared embeddings adaptively fused by attention and followed by a Zero-inflated negative binomial decoder to retain the original transcriptome information. Comprehensive evaluations across diverse datasets (human dorsolateral prefrontal cortex, breast cancer and mouse brain) at various resolution demonstrate Path-MGCN's superior accuracy and robustness, significantly outperforming state-of-the-art methods and maintaining high performance across different pathway databases (Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, Reactome). Crucially, Path-MGCN enhances biological interpretability, enabling the identification of Tertiary lymphoid structure-like regions and spatially resolved metabolic heterogeneity (hypoxia, glycolysis, AMP-activated protein kinase signaling) linked to tumor progression stages in human breast cancer. By effectively integrating functional context, Path-MGCN advances ST analysis, providing an accurate and interpretable framework to dissect tissue heterogeneity and enables detailed spatial mapping of molecular pathways that highlights potential targeted therapeutic strategies crucial for developing safe and effective synergistic anti-tumor therapies.

摘要

空间转录组学(ST)在保留空间信息的同时全面测量基因表达谱。已经提出了多种计算框架来识别空间域,这是ST数据分析的基本任务之一,以了解组织结构。然而,当前的方法常常忽略通路水平的功能背景,并且难以处理数据稀疏性问题。因此,我们开发了Path-MGCN,一种具有注意力机制的多视图图卷积网络(GCN),它整合了通路信息。我们首先通过基因集变异分析从基因表达中计算斑点水平的通路活性得分,并构建代表空间和功能邻近性的不同邻接图。一个多视图GCN学习通过注意力自适应融合的空间、通路和共享嵌入,随后是一个零膨胀负二项式解码器以保留原始转录组信息。在不同分辨率下对各种数据集(人类背外侧前额叶皮层、乳腺癌和小鼠脑)进行的综合评估表明,Path-MGCN具有卓越的准确性和鲁棒性,显著优于现有方法,并且在不同的通路数据库(京都基因与基因组百科全书、基因本体论、Reactome)中均保持高性能。至关重要的是,Path-MGCN增强了生物学可解释性,能够识别三级淋巴结构样区域以及与人类乳腺癌肿瘤进展阶段相关的空间分辨代谢异质性(缺氧、糖酵解、AMP激活的蛋白激酶信号传导)。通过有效整合功能背景,Path-MGCN推动了ST分析,提供了一个准确且可解释的框架来剖析组织异质性,并能够对分子通路进行详细的空间映射,突出了对于开发安全有效的协同抗肿瘤疗法至关重要的潜在靶向治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d97/12284772/dd5129c7fa47/bbaf365f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d97/12284772/3a810b20f412/bbaf365f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d97/12284772/3cbeb75a2e75/bbaf365f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d97/12284772/89e39e5595d8/bbaf365f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d97/12284772/c1e4414d7153/bbaf365f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d97/12284772/d3d1d049384c/bbaf365f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d97/12284772/dd5129c7fa47/bbaf365f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d97/12284772/3a810b20f412/bbaf365f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d97/12284772/3cbeb75a2e75/bbaf365f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d97/12284772/89e39e5595d8/bbaf365f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d97/12284772/c1e4414d7153/bbaf365f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d97/12284772/d3d1d049384c/bbaf365f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d97/12284772/dd5129c7fa47/bbaf365f6.jpg

相似文献

[1]
Path-MGCN: a pathway activity-based multi-view graph convolutional network for determining spatial domains.

Brief Bioinform. 2025-7-2

[2]
stGRL: spatial domain identification, denoising, and imputation algorithm for spatial transcriptome data based on multi-task graph contrastive representation learning.

BMC Biol. 2025-7-1

[3]
stGNN: Spatially Informed Cell-Type Deconvolution Based on Deep Graph Learning and Statistical Modeling.

Interdiscip Sci. 2025-6-26

[4]
GatorST: A Versatile Contrastive Meta-Learning Framework for Spatial Transcriptomic Data Analysis.

bioRxiv. 2025-7-19

[5]
Spatial-MGCN: a novel multi-view graph convolutional network for identifying spatial domains with attention mechanism.

Brief Bioinform. 2023-9-20

[6]
SpaDCN: Deciphering Spatial Functional Landscape from Spatially Resolved Transcriptomics by Aligning Cell-Cell Communications.

Small Methods. 2025-2-17

[7]
Inferring cell-type-specific gene regulatory network from cellular transcriptomics data with GeneLink.

Brief Bioinform. 2025-7-2

[8]
Short-Term Memory Impairment

2025-1

[9]
TriCLFF: a multi-modal feature fusion framework using contrastive learning for spatial domain identification.

Brief Bioinform. 2025-7-2

[10]
Multi-level channel-spatial attention and light-weight scale-fusion network (MCSLF-Net): multi-level channel-spatial attention and light-weight scale-fusion transformer for 3D brain tumor segmentation.

Quant Imaging Med Surg. 2025-7-1

本文引用的文献

[1]
GMAMDA: Predicting Metabolite-Disease Associations Based on Adaptive Hardness Negative Sampling and Adaptive Graph Multiple Convolution.

J Chem Inf Model. 2025-5-26

[2]
Multi-Manifolds fusing hyperbolic graph network balanced by pareto optimization for identifying spatial domains of spatial transcriptomics.

Brief Bioinform. 2025-3-4

[3]
STAIG: Spatial transcriptomics analysis via image-aided graph contrastive learning for domain exploration and alignment-free integration.

Nat Commun. 2025-1-27

[4]
Accurate Spatial Heterogeneity Dissection and Gene Regulation Interpretation for Spatial Transcriptomics using Dual Graph Contrastive Learning.

Adv Sci (Weinh). 2025-1

[5]
Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances.

Signal Transduct Target Ther. 2024-8-28

[6]
Deciphering spatial domains from spatial multi-omics with SpatialGlue.

Nat Methods. 2024-9

[7]
Unsupervised spatially embedded deep representation of spatial transcriptomics.

Genome Med. 2024-1-12

[8]
Tertiary lymphoid structures and B cells: An intratumoral immunity cycle.

Immunity. 2023-10-10

[9]
Spatial-MGCN: a novel multi-view graph convolutional network for identifying spatial domains with attention mechanism.

Brief Bioinform. 2023-9-20

[10]
Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST.

Nat Commun. 2023-3-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索