铁摄取调节蛋白(Fur)和延胡索酸硝酸还原酶(FNR)主要调节蛋白的表观遗传控制有助于肺部感染期间的生存。
Epigenetic control of the ferric uptake regulator (Fur) and fumarate nitrate reductase (FNR) master regulatory proteins contributes to survival during lung infection.
作者信息
Gil-Campillo Celia, Euba Begoña, Rodríguez-Arce Irene, San León David, Marino Mary C, Asensio-López Javier, López-López Nahikari, Mell Joshua C, Gutiérrez Gabriel, Langereis Jeroen D, Sánchez-Romero María Antonia, Garmendia Junkal
机构信息
Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain.
Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
出版信息
mBio. 2025 Aug 13;16(8):e0135525. doi: 10.1128/mbio.01355-25. Epub 2025 Jul 23.
UNLABELLED
DNA regulatory elements that dictate how the bacterial pathobiont infects and adapts to the airways of immunocompromised patients suffering from chronic obstructive pulmonary disease (COPD) are poorly understood. This is in part due to the scarcity of research integrating genetic and epigenetic perspectives to shed light on the role of distinct bacterial adaptive strategies within the human airways. In this work, global fitness profiling of mutants by high-throughput transposon mutant sequencing within the mouse lung identified Dam methyltransferase as an requirement for respiratory infection. Equally, single-molecule real-time sequencing methylome analyses found undermethylation of GATC motifs within putative regulatory elements and revealed the first case of phenotypic variation controlled by variable Dam methylation in . Moreover, RNA sequencing differential gene expression disclosed a novel regulatory network where Dam methyltransferase positively regulates the expression of the ferric uptake regulator (Fur), which in turn represses the expression of the fumarate nitrate reductase (FNR) regulator and, subsequently, of a repertoire of genes that belong to the FNR regulon and encode bacterial anaerobic defenses against, among others, reactive nitrogen species produced within the diseased airways. Our results present a multifactorial regulatory network where the interplay between the Fur and FNR master transcriptional regulators is controlled epigenetically by Dam methylation. We put forward the notion that this network regulates survival in diseased airway niches with high nitrosative stress where damage reduces the amount of oxygen in the lungs, as encountered in COPD.
IMPORTANCE
Regulatory mechanisms governing the ability of to survive within the human lungs remain poorly elucidated. Here, by coordinated exploitation of multiomic approaches, and using reference and clinical strains, we present evidence that the Dam methyltransferase mediates epigenetic regulatory mechanisms facilitating bacterial phenotypic diversity and flexibility, besides reversibility, to contribute to survival within the lungs of individuals where disease reduces the amount of oxygen, as encountered in COPD. We reveal a novel bacterial network where DNA methylation regulates the expression of and interplay between the Fur and FNR master transcriptional regulators, which act in a coordinated manner, controlling the expression of genes involved in bacterial defenses against the nitrosative stress encountered in the diseased lungs, and further highlight the importance of oxygen restriction within this hostile niche.
未标记
目前人们对决定细菌致病共生体如何感染并适应慢性阻塞性肺疾病(COPD)免疫受损患者气道的DNA调控元件了解甚少。部分原因在于,将遗传和表观遗传观点结合起来以阐明人类气道内不同细菌适应性策略作用的研究较为匮乏。在这项研究中,通过对小鼠肺内的突变体进行高通量转座子突变测序进行全局适应性分析,确定Dam甲基转移酶是呼吸道感染的必需条件。同样,单分子实时测序甲基化组分析发现假定调控元件内GATC基序的甲基化不足,并揭示了由可变Dam甲基化控制表型变异的首例情况。此外,RNA测序差异基因表达揭示了一个新的调控网络,其中Dam甲基转移酶正向调节铁摄取调节因子(Fur)的表达,而Fur反过来又抑制延胡索酸硝酸还原酶(FNR)调节因子的表达,随后抑制属于FNR调节子并编码细菌对患病气道内产生的活性氮等进行厌氧防御的一系列基因的表达。我们的研究结果展示了一个多因素调控网络,其中Fur和FNR主要转录调节因子之间的相互作用由Dam甲基化进行表观遗传控制。我们提出这样一种观点,即该网络调节细菌在具有高亚硝化应激的患病气道生态位中的生存,在COPD中会出现肺内氧气量减少的损伤情况。
重要性
关于细菌在人类肺部生存能力的调控机制仍未得到充分阐明。在此,通过协同利用多组学方法,并使用参考菌株和临床菌株,我们提供证据表明,Dam甲基转移酶介导表观遗传调控机制,促进细菌表型多样性和灵活性,以及可逆性,从而有助于细菌在疾病导致氧气量减少的个体肺内生存,如在COPD中所见。我们揭示了一个新的细菌网络,其中DNA甲基化调节Fur和FNR主要转录调节因子的表达及相互作用,它们协同作用,控制参与细菌抵御患病肺部亚硝化应激的基因表达,并进一步强调了这种恶劣生态位中氧限制的重要性。