Suppr超能文献

基于空间异质性,利用克里金插值法对高原湿地不同土地类型的土壤有机碳进行比较分析。

Comparative analysis of soil organic carbon across different land types in plateau wetlands using Kriging interpolation based on spatial heterogeneity.

作者信息

Wen Ximei, Luo Wenmin, Yang Xiuyuan, Li Fupeng, Zhang Zhenming

机构信息

Guizhou Institute of Mountainous Resources, Guizhou Academy of Sciences, Guiyang, Guizhou, People's Republic of China.

Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, China.

出版信息

PLoS One. 2025 Jul 23;20(7):e0328246. doi: 10.1371/journal.pone.0328246. eCollection 2025.

Abstract

Wetlands, as an important global carbon reservoir, contribute significantly to the terrestrial carbon cycle. However, the high spatial heterogeneity of wetland ecosystems poses a considerable challenge to accurate estimation and mapping of soil organic carbon (SOC). In this study, we focused on Caohai Wetland in Guizhou Province, China, a typical plateau freshwater wetland, to evaluate the spatial variability of SOC across five land use types. A total of 122 surface soil samples were collected, and SOC content was analyzed using three Kriging interpolation methods-Ordinary Kriging (OK), Simple Kriging (SK), and Universal Kriging (UK)-in combination with four semi-variogram models (Gaussian, Hole effect, J-Bessel, and K-Bessel). The results indicated that SOC distribution varied significantly among different soil types. The spatial variability was highest in swamp and grassland soils and lowest in agricultural and forest soils. Among the semi-variogram models, the J-Bessel model showed the best performance in capturing local variation patterns. OK and SK yielded lower RMSE values (2.41) and higher R² (0.913 and 0.911, respectively) than UK (RMSE = 2.80; R² = 0.863). Principal component analysis revealed that SOC was positively correlated with total nitrogen, available nitrogen, Cd, Zn, DDT, and OCPs, and negatively correlated with pH. The cumulative variance explained by the two principal components was 81.3%. These findings demonstrate that Bessel-type models combined with Ordinary or Simple Kriging provide superior prediction accuracy in highly heterogeneous wetland soils. The methodology offers a scientific basis for SOC spatial modeling and targeted soil carbon management strategies in plateau wetland ecosystems.

摘要

湿地作为全球重要的碳库,对陆地碳循环贡献显著。然而,湿地生态系统的高空间异质性给土壤有机碳(SOC)的准确估算和制图带来了巨大挑战。在本研究中,我们聚焦于中国贵州省的草海湿地,这是一个典型的高原淡水湿地,以评估五种土地利用类型下SOC的空间变异性。共采集了122个表层土壤样本,并结合四种半方差函数模型(高斯模型、孔洞效应模型、J - 贝塞尔模型和K - 贝塞尔模型),使用三种克里金插值方法——普通克里金法(OK)、简单克里金法(SK)和通用克里金法(UK)分析SOC含量。结果表明,不同土壤类型间SOC分布差异显著。沼泽和草地土壤的空间变异性最高,农业和森林土壤的空间变异性最低。在半方差函数模型中,J - 贝塞尔模型在捕捉局部变异模式方面表现最佳。与UK(RMSE = 2.80;R² = 0.863)相比,OK和SK的RMSE值较低(2.41),R²较高(分别为0.913和0.911)。主成分分析表明,SOC与总氮、有效氮、镉、锌、滴滴涕和有机氯农药呈正相关,与pH呈负相关。两个主成分解释的累积方差为81.3%。这些发现表明,贝塞尔型模型与普通或简单克里金法相结合,在高度异质的湿地土壤中具有更高的预测精度。该方法为高原湿地生态系统中SOC空间建模和针对性土壤碳管理策略提供了科学依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54c3/12286344/106d02cea47e/pone.0328246.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验