Suppr超能文献

使用大语言模型从儿科临床报告中提取信息。

Using large language models to extract information from pediatric clinical reports.

作者信息

Danhauser Katharina, Wang Yingding, Klein Christoph, Tacke Uta, Mantoan Larissa, Ritter Laura Aurica, Heinen Florian, Nobile Chiara, Tacke Moritz

机构信息

Department of Pediatrics, LMU University Hospital, Munich, Germany.

University Children's Hospital, Basel, Switzerland.

出版信息

PLOS Digit Health. 2025 Jul 23;4(7):e0000919. doi: 10.1371/journal.pdig.0000919. eCollection 2025 Jul.

Abstract

Most medical documentation, including clinical reports, exists in unstructured formats, which hinder efficient data analysis and integration into decision-making systems for patient care and research. Both fields could profit significantly from a reliable automatic analysis of these documents. Current methods for data extraction from these documents are labor-intensive and inflexible. Large Language Models (LLMs) offer a promising alternative for transforming unstructured medical documents into structured data in a flexible manner. This study assesses the performance of large language models (LLMs) in extracting structured data from pediatric clinical reports. Nine different LLMs were assessed. The results demonstrate that both commercial and open-source LLMs can achieve high accuracy in identifying patient-specific information, with top-performing models achieving over 90% accuracy in key tasks.

摘要

大多数医学文档,包括临床报告,都是非结构化格式,这阻碍了高效的数据分析以及将其整合到用于患者护理和研究的决策系统中。这两个领域都可以从对这些文档进行可靠的自动分析中显著受益。目前从这些文档中提取数据的方法既费力又不灵活。大语言模型(LLMs)为以灵活方式将非结构化医学文档转换为结构化数据提供了一个有前景的替代方案。本研究评估了大语言模型(LLMs)从儿科临床报告中提取结构化数据的性能。评估了九个不同的大语言模型。结果表明,商业和开源大语言模型在识别患者特定信息方面都能达到高精度,表现最佳的模型在关键任务中的准确率超过90%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf25/12286318/5b91d7dccd2e/pdig.0000919.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验