Izhar Amaan, Idris Norisma, Japar Nurul
Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
Artif Intell Med. 2025 Oct;168:103220. doi: 10.1016/j.artmed.2025.103220. Epub 2025 Jul 19.
Medical radiology reports play a crucial role in diagnosing various diseases, yet generating them manually is time-consuming and burdens clinical workflows. Medical radiology report generation aims to automate this process using deep learning to assist radiologists and reduce patient wait times. This study presents the most comprehensive systematic review to date on deep learning-based MRRG, encompassing recent advances that span traditional architectures to large language models. We focus on available datasets, modeling approaches, and evaluation practices. Following PRISMA guidelines, we retrieved 323 articles from major academic databases and included 78 studies after eligibility screening. We critically analyze key components such as model architectures, loss functions, datasets, evaluation metrics, and optimizers - identifying 22 widely used datasets, 14 evaluation metrics, around 20 loss functions, over 25 visual backbones, and more than 30 textual backbones. To support reproducibility and accelerate future research, we also compile links to modern models, toolkits, and pretrained resources. Our findings provide technical insights and outline future directions to address current limitations, promoting collaboration at the intersection of medical imaging, natural language processing, and deep learning to advance trustworthy AI systems in radiology.
医学放射学报告在各种疾病的诊断中起着至关重要的作用,但手动生成报告既耗时又给临床工作流程带来负担。医学放射学报告生成旨在利用深度学习实现这一过程的自动化,以协助放射科医生并减少患者等待时间。本研究对基于深度学习的医学放射报告生成(MRRG)进行了迄今为止最全面的系统综述,涵盖了从传统架构到大型语言模型的最新进展。我们关注可用的数据集、建模方法和评估实践。按照PRISMA指南,我们从主要学术数据库中检索了323篇文章,经过资格筛选后纳入了78项研究。我们批判性地分析了关键组件,如模型架构、损失函数、数据集、评估指标和优化器——识别出22个广泛使用的数据集、14个评估指标、约20个损失函数、超过25个视觉主干和30多个文本主干。为了支持可重复性并加速未来研究,我们还汇编了现代模型、工具包和预训练资源的链接。我们的研究结果提供了技术见解,并概述了应对当前局限性的未来方向,促进医学成像、自然语言处理和深度学习交叉领域的合作,以推动放射学中可信人工智能系统的发展。