Pérez-Benito Ángela, Galiana-Bordera Adrián, Martínez-Gironés Pedro-Miguel, Urbanos Gemma, Nogué Infante Anna, Gómez-Benito María José, Pérez María Ángeles
Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute (IIS La Fe), Avenida Fernando Abril Martorell, València, 46026, Spain.
Comput Methods Programs Biomed. 2025 Oct;270:108931. doi: 10.1016/j.cmpb.2025.108931. Epub 2025 Jul 14.
Prostate cancer remains a significant global health concern, with treatment response varying among patients. Radiotherapy, often combined with hormone therapy, is a key treatment approach, but predicting individual outcomes remains challenging. Computational models have emerged as valuable tools to simulate tumour behaviour and optimise treatment strategies. This study presents a patient-specific computational model designed to predict tumour response by associating Prostate-Specific Antigen (PSA) dynamics with tumour biological behaviour under therapy.
The model integrates patient-specific clinical data and imaging biomarkers from a retrospective study, including apparent diffusion coefficient values from diffusion-weighted imaging to represent tumour cellularity and perfusion parameters from dynamic contrast-enhanced MRI to characterise vascular properties. Clinical data from five patients undergoing radiotherapy, hormone therapy, or combination therapy are used for model development and validation. Due to the limited availability of patient data, PSA is the only parameter used for calibration and validation. One patient is used for calibration, while six serve for validation. Model performance is evaluated by calculating the mean absolute error (MAE) between simulated and observed PSA values post-treatment. The model also estimates tumour shrinkage, though this cannot be directly validated. To assess predictive capacity, two patients are selected for additional analysis simulating different treatment strategies and their impact on PSA dynamics and tumour shrinkage.
The model successfully replicates PSA trends, with MAE values of 0.1, 0.08, 0.23, 0.14, 0.11 and 0.15 ng/mL and RMSE of 0.18, 0.15, 0.24, 0.18, 0.12 and 0.15 ng/mL for the six validation patients, with Patient C showing the closest correspondence to clinical data (MAE = 0.08). Overall, the MAE ranges from 0.08 ng/mL to 0.23 ng/mL, indicating the model's ability to approximate treatment response. In the two selected patients, simulated treatment variations result in distinct PSA dynamics and estimated tumour shrinkage, highlighting interpatient variability in treatment response.
This computational model provides a predictive framework for assessing prostate cancer treatment response based on patient-specific PSA dynamics and imaging biomarkers. While tumour shrinkage estimates cannot be validated, the model offers insights into treatment-induced PSA fluctuations. The findings support the potential of in-silico tools in personalised medicine, aiding clinical decision-making by evaluating different therapeutic strategies. Further validation with larger datasets is necessary for clinical integration.
前列腺癌仍是全球重大的健康问题,患者的治疗反应各不相同。放疗通常与激素治疗联合使用,是一种关键的治疗方法,但预测个体治疗结果仍具有挑战性。计算模型已成为模拟肿瘤行为和优化治疗策略的重要工具。本研究提出了一种针对患者的计算模型,旨在通过将前列腺特异性抗原(PSA)动态变化与治疗过程中的肿瘤生物学行为相关联来预测肿瘤反应。
该模型整合了一项回顾性研究中的患者特异性临床数据和影像生物标志物,包括扩散加权成像的表观扩散系数值以表征肿瘤细胞密度,以及动态对比增强MRI的灌注参数以描述血管特性。来自五名接受放疗、激素治疗或联合治疗患者的临床数据用于模型开发和验证。由于患者数据有限,PSA是用于校准和验证的唯一参数。一名患者用于校准,六名患者用于验证。通过计算治疗后模拟PSA值与观察到的PSA值之间的平均绝对误差(MAE)来评估模型性能。该模型还估计肿瘤缩小情况,尽管这无法直接验证。为了评估预测能力,选择两名患者进行额外分析,模拟不同治疗策略及其对PSA动态变化和肿瘤缩小的影响。
该模型成功复制了PSA趋势,六名验证患者的MAE值分别为0.1、0.08、0.23、0.14、0.11和0.15 ng/mL,均方根误差(RMSE)分别为0.18、0.15、0.24、0.18、0.12和0.15 ng/mL,患者C与临床数据的对应关系最为接近(MAE = 0.08)。总体而言,MAE范围为从0.08 ng/mL到0.23 ng/mL,表明该模型能够近似治疗反应。在两名选定患者中,模拟的治疗变化导致了不同的PSA动态变化和估计的肿瘤缩小情况,突出了患者间治疗反应的变异性。
该计算模型提供了一个预测框架,用于基于患者特异性PSA动态变化和影像生物标志物评估前列腺癌治疗反应。虽然肿瘤缩小估计无法验证,但该模型提供了对治疗引起的PSA波动的见解。这些发现支持了计算机模拟工具在个性化医疗中的潜力,通过评估不同治疗策略辅助临床决策。为实现临床应用,需要使用更大的数据集进行进一步验证。