Zhang Runzi, Xie Shunbi, Tang Youlin, He Xiang, Yang Xiaoyu, Liu Yao, Wang Mengjun, He Yi
School of Science, Xihua University, Chengdu, 610039, PR China.
Key Laboratory for Resource Utilization of Heavy Metal Wastewater, Chongqing University of Arts and Sciences, Chongqing, 402160, PR China.
Anal Chim Acta. 2025 Oct 1;1369:344361. doi: 10.1016/j.aca.2025.344361. Epub 2025 Jun 23.
MicroRNAs (miRNAs) are crucial biomarkers for early disease diagnosis, but their low abundance in biological samples poses a significant challenge for detection. Surface-enhanced Raman scattering (SERS) biosensors have emerged as a powerful tool for ultrasensitive miRNA detection due to their high sensitivity. However, achieving rapid and efficient signal amplification remains a critical hurdle. Herein, a novel dual-catalytic hairpin amplification (D-CHA) strategy is introduced, combined with gold nanoparticle-doped covalent organic frameworks (COF@Au), to develop an advanced SERS biosensor. This approach creates a robust platform for miRNA-21 detection with enhanced Raman signals.
The proposed SERS biosensor integrates the D-CHA strategy with COF@Au to achieve ultrasensitive miRNA-21 detection. Unlike conventional CHA, D-CHA introduces an additional hairpin DNA (Hp1), enabling simultaneous release of Hp1 and target miRNA-21 to participate in subsequent amplification cycles. This design significantly improves signal amplification efficiency, achieving rapid detection within 20 min. The COF@Au substrate, with its high surface area and uniform Au NP distribution, provides strong and consistent Raman enhancement. Upon target binding, the hairpin DNA opens, triggering D-CHA and facilitating the attachment of SERS tags to COF@Au. Furthermore, the multi-gap structure of Au nanoflowers (Au NFs) generates multiple SERS "hot spots," amplifying the local electromagnetic field and synergistically enhancing the Raman signal of 4-nitrothiophenol (4-NTP). The biosensor demonstrates exceptional sensitivity, with a detection limit of 3.96 × 10 mol/L, and operates under a "signal-on" strategy, ensuring high specificity and reliability.
This study presents a groundbreaking SERS biosensor that combines D-CHA signal amplification with COF@Au substrates for ultrasensitive miRNA-21 detection. The innovative D-CHA strategy significantly enhances amplification efficiency, while the COF@Au platform provides robust Raman enhancement. The biosensor's ability to achieve rapid and sensitive detection of miRNA-21 at ultralow concentrations opens new avenues for early disease diagnosis and biomedical research. This work provides a new way for sensitive and rapid detection of various biomarkers.
微小RNA(miRNA)是疾病早期诊断的关键生物标志物,但其在生物样品中的丰度较低,给检测带来了重大挑战。表面增强拉曼散射(SERS)生物传感器因其高灵敏度已成为超灵敏检测miRNA的有力工具。然而,实现快速高效的信号放大仍然是一个关键障碍。在此,引入了一种新型的双催化发夹扩增(D-CHA)策略,并结合金纳米颗粒掺杂的共价有机框架(COF@Au),开发出一种先进的SERS生物传感器。该方法为检测miRNA-21创建了一个具有增强拉曼信号的强大平台。
所提出的SERS生物传感器将D-CHA策略与COF@Au相结合,实现了对miRNA-21的超灵敏检测。与传统的CHA不同,D-CHA引入了额外的发夹DNA(Hp1),能够同时释放Hp1和靶标miRNA-21以参与后续的扩增循环。这种设计显著提高了信号放大效率,在20分钟内实现了快速检测。COF@Au基底具有高表面积和均匀的金纳米颗粒分布,提供了强大且一致的拉曼增强。当靶标结合时,发夹DNA打开,触发D-CHA并促进SERS标签附着到COF@Au上。此外,金纳米花(Au NFs)的多间隙结构产生多个SERS“热点”,放大局部电磁场并协同增强4-硝基硫酚(4-NTP)的拉曼信号。该生物传感器表现出卓越的灵敏度,检测限为3.96×mol/L,并采用“信号开启”策略运行,确保了高特异性和可靠性。
本研究提出了一种开创性的SERS生物传感器,它将D-CHA信号放大与COF@Au基底相结合用于超灵敏检测miRNA-21。创新的D-CHA策略显著提高了放大效率,而COF@Au平台提供了强大的拉曼增强。该生物传感器在超低浓度下实现对miRNA-21的快速灵敏检测的能力为疾病早期诊断和生物医学研究开辟了新途径。这项工作为各种生物标志物的灵敏快速检测提供了一种新方法。