Suppr超能文献

一种用于工业物联网环境中有效异常检测的新型集成瓦瑟斯坦生成对抗网络框架。

A novel ensemble Wasserstein GAN framework for effective anomaly detection in industrial internet of things environments.

作者信息

Riaz Rubina, Han Guangjie, Shaukat Kamran, Khan Naimat Ullah, Zhu Hongbo, Wang Lei

机构信息

Dalian University of Technology, Software Engineering, Dalian, 116024, China.

School of Internet of Things Engineering, Changzhou, 210098, China.

出版信息

Sci Rep. 2025 Jul 23;15(1):26786. doi: 10.1038/s41598-025-07533-1.

Abstract

Imbalanced datasets in Industrial Internet of Things (IIoT) environments pose a serious challenge for reliable pattern classification. Critical instances of minority classes (such as anomalies or system faults) are often vastly outnumbered by routine data, making them difficult to detect. Traditional resampling and machine learning methods struggle with such skewed data, usually failing to identify these rare but significant events. To address this, we introduce a two-stage generative oversampling framework called Enhanced Optimization of Wasserstein Generative Adversarial Network (EO-WGAN). This enhanced WGAN-based Oversampling approach combines the strengths of the Synthetic Minority Oversampling Technique (SMOTE) and Wasserstein Generative Adversarial Networks (WGAN). First, SMOTE interpolates new minority-class examples to roughly balance the dataset. Next, a WGAN is trained on this augmented data to refine and generate high-fidelity minority samples that preserve the complex non-linear feature distributions characteristic of IIoT data. Unlike prior SMOTE and GAN methods, our framework leverages the Wasserstein loss for more stable training. It incorporates an optimized sampling strategy to ensure that the synthetic data meaningfully extends the classifier's decision boundaries. Integrating an advanced oversampling technique with a critic-guided generative model significantly improves minority-class recognition, eliminating the need for extensive feature engineering or domain-specific tuning. We validate EO-WGAN on an IIoT cybersecurity dataset (UNSW-NB15) and several other imbalanced benchmarks. The proposed method consistently outperforms state-of-the-art oversampling techniques, achieving up to 95.2% accuracy (with precision and recall of 94.6% and 95.4%, respectively) in our experiments. EO-WGAN offers a scalable and cost-effective solution for anomaly detection and predictive maintenance in Industrial Internet of Things (IIoT), and its generality makes it applicable to other domains that face severe class imbalance. The results demonstrate that our approach significantly enhances the detection of minority-class events, resulting in more reliable industrial analytics and informed operational decision-making.

摘要

工业物联网(IIoT)环境中的不平衡数据集对可靠的模式分类构成了严峻挑战。少数类别的关键实例(如异常或系统故障)在数量上往往远远少于常规数据,这使得它们难以被检测到。传统的重采样和机器学习方法在处理这种倾斜数据时存在困难,通常无法识别这些罕见但重要的事件。为了解决这个问题,我们引入了一个两阶段生成式过采样框架,称为瓦瑟斯坦生成对抗网络增强优化(EO-WGAN)。这种基于增强型WGAN的过采样方法结合了合成少数类过采样技术(SMOTE)和瓦瑟斯坦生成对抗网络(WGAN)的优势。首先,SMOTE对新的少数类示例进行插值,以大致平衡数据集。接下来,在这个扩充后的数据上训练一个WGAN,以细化并生成保留工业物联网数据复杂非线性特征分布的高保真少数样本。与先前的SMOTE和GAN方法不同,我们的框架利用瓦瑟斯坦损失进行更稳定的训练。它纳入了一种优化的采样策略,以确保合成数据有意义地扩展分类器的决策边界。将先进的过采样技术与判别器引导的生成模型相结合,显著提高了少数类别的识别能力,无需进行广泛的特征工程或特定领域的调优。我们在一个工业物联网网络安全数据集(UNSW-NB15)和其他几个不平衡基准上验证了EO-WGAN。在我们的实验中,所提出的方法始终优于现有的过采样技术,准确率高达95.2%(精确率和召回率分别为94.6%和95.4%)。EO-WGAN为工业物联网(IIoT)中的异常检测和预测性维护提供了一种可扩展且经济高效的解决方案,其通用性使其适用于其他面临严重类别不平衡的领域。结果表明,我们的方法显著增强了对少数类事件的检测能力,从而实现更可靠的工业分析和明智的运营决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f35/12287428/26c5033393e8/41598_2025_7533_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验