使用Decipher对脱轨细胞状态进行联合表示和可视化。

Joint representation and visualization of derailed cell states with Decipher.

作者信息

Nazaret Achille, Fan Joy Linyue, Lavallée Vincent-Philippe, Burdziak Cassandra, Cornish Andrew E, Kiseliovas Vaidotas, Bowman Robert L, Masilionis Ignas, Chun Jaeyoung, Eisman Shira E, Wang James, Hong Justin, Shi Lingting, Levine Ross L, Mazutis Linas, Blei David, Pe'er Dana, Azizi Elham

机构信息

Department of Computer Science, Columbia University, New York, NY, 10027, USA.

Irving Institute for Cancer Dynamics, Columbia University, New York, NY, 10027, USA.

出版信息

Genome Biol. 2025 Jul 23;26(1):219. doi: 10.1186/s13059-025-03682-8.

Abstract

Biological insights often depend on comparing conditions such as disease and health. Yet, we lack effective computational tools for integrating single-cell genomics data across conditions or characterizing transitions from normal to deviant cell states. Here, we present Decipher, a deep generative model that characterizes derailed cell-state trajectories. Decipher jointly models and visualizes gene expression and cell state from normal and perturbed single-cell RNA-seq data, revealing shared and disrupted dynamics. We demonstrate its superior performance across diverse contexts, including in pancreatitis with oncogene mutation, acute myeloid leukemia, and gastric cancer.

摘要

生物学见解通常依赖于比较疾病和健康等状况。然而,我们缺乏有效的计算工具来整合不同状况下的单细胞基因组学数据,或表征从正常细胞状态到异常细胞状态的转变。在此,我们展示了Decipher,一种表征偏离的细胞状态轨迹的深度生成模型。Decipher联合建模并可视化来自正常和受干扰的单细胞RNA测序数据的基因表达和细胞状态,揭示共享和 disrupted 的动态。我们在多种背景下证明了其卓越性能,包括在具有致癌基因突变的胰腺炎、急性髓系白血病和胃癌中。 (注:原文中“disrupted”未准确翻译,这里直接保留英文是因为不太明确其在文中确切想表达的中文意思,可能是“受干扰的”之类,但不确定。)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索