Ma Xiaoyue, Qi Kai, Ju Xinfeng, Sun Yawei, Yang Hua, Ke Yubin, Zhang Jun, Zhao Yurong, Xu Hai, Wang Jiqian
College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China.
Spallation Neutron Source Science Center, Dalang, Dongguan, 523803, China.
Angew Chem Int Ed Engl. 2025 Sep 8;64(37):e202511407. doi: 10.1002/anie.202511407. Epub 2025 Jul 23.
Precise control of structures and morphologies in peptide self-assembly has been challenging. We report the self-assembly of amphiphilic peptides IH, designed with a modular structure featuring three consecutive isoleucine residues as a hydrophobic tail and a C-terminal histidine-based hydrophilic headgroup. Microscopic, neutron scattering, and spectroscopic techniques demonstrate that the designed peptides self-assemble into β-sheet nanofibrils, with their helix handedness exhibiting subtle pH-dependent inversion. pH titration, NMR, and molecular dynamics simulations reveal the underlying mechanism correlates with the protonation state of histidine and the molecular packing modes in β-sheet assemblies. The protonated histidine promotes antiparallel β-sheet packing at lower pH while its deprotonated state favors parallel packing when pH is increased. Strong π-π stacking interactions between deprotonated histidine side chains in parallel β-sheet arrangements drive chiral flipping of β-strands, ultimately inducing supramolecular helix inversion. Furthermore, such a pH-dependent helix inversion can be engineered by inserting the achiral and flexible glycine at the hydrophobic/hydrophilic interface, with IGH assembly maintaining this effect while IGGH assembly abolishing it. This work not only advances our mechanistic understanding of peptide chirality inversion at the level of individual β-sheets but also provides a blueprint for designing hierarchical chirality through precise modulation of molecular packing modes and side-chain interactions.
精确控制肽自组装中的结构和形态一直具有挑战性。我们报道了两亲性肽IH的自组装,其设计为模块化结构,具有三个连续异亮氨酸残基作为疏水尾和基于组氨酸的C端亲水头基。显微镜、中子散射和光谱技术表明,设计的肽自组装成β-折叠纳米纤维,其螺旋手性表现出微妙的pH依赖性反转。pH滴定、核磁共振和分子动力学模拟揭示了其潜在机制与组氨酸的质子化状态以及β-折叠组装中的分子堆积模式相关。质子化的组氨酸在较低pH下促进反平行β-折叠堆积,而当pH升高时,其去质子化状态有利于平行堆积。平行β-折叠排列中去质子化组氨酸侧链之间强烈的π-π堆积相互作用驱动β-链的手性翻转,最终导致超分子螺旋反转。此外,这种pH依赖性螺旋反转可以通过在疏水/亲水界面插入非手性且灵活的甘氨酸来设计,IGH组装保留了这种效应,而IGGH组装则消除了这种效应。这项工作不仅在单个β-折叠水平上推进了我们对肽手性反转机制的理解,还为通过精确调节分子堆积模式和侧链相互作用来设计分级手性提供了蓝图。