Suppr超能文献

扭转局面:有机金属BIP-Al体系中以配体为中心的氢化物穿梭

Turning the Tables: Ligand-Centered Hydride Shuttling in Organometallic BIP-Al Systems.

作者信息

Delgado-Collado Juan Manuel, Fernández de Córdova Francisco José, Palma Pilar, Cámpora Juan, Rodríguez-Delgado Antonio

机构信息

Instituto de Investigaciones Químicas, CSIC-Universidad de Sevilla, Av. Américo Vespucio, 49, Sevilla 41092, Spain.

出版信息

Inorg Chem. 2025 Aug 4;64(30):15760-15773. doi: 10.1021/acs.inorgchem.5c02587. Epub 2025 Jul 24.

Abstract

The reversible storage and release of hydride equivalents remains a central challenge in the design of biomimetic redox systems. Cationic 2,6-bis(imino)pyridine organoaluminum complexes [(4-R-BIP)AlR] (where = H; ' = Me, 1a; ' = Et, 1b; = Bn; ' = Me, 1c) and their neutral 2,6-bis(imino)-4-R-dihydropyridinate counterparts [(4-R-HBIP)AlR] 2a-c are presented as chemically reversible hydride exchangers. Interconversion between these systems is achieved through strong reducing agents such as M[HBEt] (where = Li; Na) or LiAlH, while powerful electrophiles like B(CF) or cationic trityl salts PhC enable the reverse transformation, with the latter providing complete selectivity. Overall, this reversible hydride exchange mirrors natural NAD(P)H/NADP cofactor system. These findings establish a new platform for ligand-centered hydride shuttling, where the metal fragment acts as a passive modulator─inverting the traditional roles assigned to metal and ligand.

摘要

氢化物等价物的可逆存储和释放仍然是仿生氧化还原系统设计中的核心挑战。阳离子型2,6-双(亚氨基)吡啶有机铝配合物[(4-R-BIP)AlR](其中 = H;' = Me,1a;' = Et,1b; = Bn;' = Me,1c)及其中性的2,6-双(亚氨基)-4-R-二氢吡啶酸盐类似物[(4-R-HBIP)AlR] 2a-c被作为化学可逆氢化物交换剂提出。这些体系之间的相互转化通过强还原剂如M[HBEt](其中 = Li;Na)或LiAlH实现,而像B(CF)或阳离子型三苯基盐PhC这样的强亲电试剂则能实现逆向转化,后者具有完全的选择性。总体而言,这种可逆氢化物交换反映了天然的NAD(P)H/NADP辅因子系统。这些发现建立了一个以配体为中心的氢化物穿梭新平台,其中金属片段充当被动调节剂——颠倒了传统上赋予金属和配体的角色。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4691/12326362/3db16993f63b/ic5c02587_0004.jpg

相似文献

1
Turning the Tables: Ligand-Centered Hydride Shuttling in Organometallic BIP-Al Systems.
Inorg Chem. 2025 Aug 4;64(30):15760-15773. doi: 10.1021/acs.inorgchem.5c02587. Epub 2025 Jul 24.
3
Manganese germylene complexes: reactivity with dihydrogen, isonitriles, and dinitrogen.
Dalton Trans. 2025 Jun 24;54(25):9949-9968. doi: 10.1039/d5dt01025j.
6
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
9
Effects of parental care on skin microbial community composition in poison frogs.
Elife. 2025 Jul 31;14:RP103331. doi: 10.7554/eLife.103331.
10
Immunomodulators and immunosuppressants for relapsing-remitting multiple sclerosis: a network meta-analysis.
Cochrane Database Syst Rev. 2024 Jan 4;1(1):CD011381. doi: 10.1002/14651858.CD011381.pub3.

本文引用的文献

1
Reversible Redox Ligand-Centered Reactivity in 2,6-Bisiminopyridine Aluminum Systems.
Inorg Chem. 2024 Oct 14;63(41):19156-19166. doi: 10.1021/acs.inorgchem.4c02664. Epub 2024 Oct 3.
2
Metal-Ligand Cooperation with Thiols as Transient Cooperative Ligands: Acceleration and Inhibition Effects in (De)Hydrogenation Reactions.
Acc Chem Res. 2024 Jun 18;57(12):1709-1721. doi: 10.1021/acs.accounts.4c00198. Epub 2024 Jun 4.
3
Methide Affinity Scale: Key Thermodynamic Data Underpinning Catalysis, Organic Synthesis, and Organometallic and Polymer Chemistry.
J Phys Chem A. 2024 Feb 15;128(6):977-988. doi: 10.1021/acs.jpca.3c05974. Epub 2024 Jan 31.
4
Group 13 ion coordination to pyridyl breaks the reduction potential hydricity scaling relationship for dihydropyridinates.
Chem Sci. 2023 Nov 16;14(47):13944-13950. doi: 10.1039/d3sc03806h. eCollection 2023 Dec 6.
5
Redox Out of the Box: Catalytic Versatility Across NAD(P)H-Dependent Oxidoreductases.
Angew Chem Int Ed Engl. 2024 Mar 22;63(13):e202314740. doi: 10.1002/anie.202314740. Epub 2024 Jan 16.
6
Activation of the Ga Cation for Bond Activation: from Oxidative Additions into C-Cl and H-P Bonds to Reversible Insertion into P.
Chemistry. 2023 Oct 18;29(58):e202302212. doi: 10.1002/chem.202302212. Epub 2023 Sep 8.
7
Metallated dihydropyridinates: prospects in hydride transfer and (electro)catalysis.
Chem Sci. 2023 Jul 17;14(31):8234-8248. doi: 10.1039/d3sc02080k. eCollection 2023 Aug 9.
8
Biomimetic Asymmetric Reduction Based on the Regenerable Coenzyme NAD(P)H Models.
Acc Chem Res. 2023 Aug 1;56(15):2096-2109. doi: 10.1021/acs.accounts.3c00129. Epub 2023 Jul 13.
9
Group 13 ion coordination to pyridyl models NAD reduction potentials.
Chem Commun (Camb). 2023 Jul 20;59(59):9110-9113. doi: 10.1039/d3cc02562d.
10
Aromaticity in catalysis: metal ligand cooperation via ligand dearomatization and rearomatization.
Chem Commun (Camb). 2021 Mar 28;57(25):3070-3082. doi: 10.1039/d1cc00528f. Epub 2021 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验