Timmer Kyle B, Killian Megan L, Harley Brendan A C
Dept. Chemical and Biomolecular Engineering, USA.
Department of Orthopaedic Surgery, USA.
Bioact Mater. 2025 Jul 15;53:287-299. doi: 10.1016/j.bioactmat.2025.07.017. eCollection 2025 Nov.
The severity of rotator cuff injury outcomes and a lack of tendon-to-bone enthesis regeneration strategies have inspired advances in biomaterials science to develop methods for interfacial tissue engineering. Here, we demonstrate a triphasic biomaterial comprising a non-mineralized, anisotropic collagen scaffold and a mineralized isotropic collagen scaffold linked via a continuous thiolated gelatin (Gel-SH) interface. This material provides a stratified environment in composition and porous architecture, and we report functional activity of human mesenchymal stem cells (hMSCs) across the scaffold. Notably, MSCs can be seeded onto the triphasic biomaterial and remain viable for up to 21 days. In addition, MSCs within the interfacial Gel-SH interfacial zone express markers associated with the rotator cuff fibrocartilaginous enthesis, including gene upregulation of and functional secretion of TGF-β1. Altogether, these findings suggest that this triphasic scaffold design could create a permissive environment for fibrochondrogenic activity in support of eventual enthesis interfacial tissue engineering applications.
肩袖损伤后果的严重性以及缺乏肌腱到骨附着点再生策略,激发了生物材料科学的进步,以开发界面组织工程方法。在此,我们展示了一种三相生物材料,它由一个非矿化的各向异性胶原支架和一个通过连续的硫醇化明胶(Gel-SH)界面连接的矿化各向同性胶原支架组成。这种材料在组成和多孔结构方面提供了一个分层环境,并且我们报告了人骨髓间充质干细胞(hMSCs)在整个支架上的功能活性。值得注意的是,间充质干细胞可以接种到三相生物材料上并在长达21天内保持活力。此外,界面Gel-SH区域内的间充质干细胞表达与肩袖纤维软骨附着点相关的标志物,包括TGF-β1的基因上调和功能分泌。总之,这些发现表明这种三相支架设计可以为纤维软骨生成活性创造一个有利环境,以支持最终的附着点界面组织工程应用。