Madubuko Nnamdi, Hsieh Tzung-En, Vorlaufer Nora, Carl Simon, Steffen Julien, Mölkner Andreas, Taccardi Nicola, Frisch Johannes, Wilks Regan G, Will Johannes, Haumann Marco, Görling Andreas, Spiecker Erdmann, Felfer Peter, Bär Marcus, Wasserscheid Peter
Lehrstuhl für Chemische Reaktionstechnik (CRT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, 91058 Erlangen, Germany.
Department Interface Design and Energy Materials In-Situ Laboratory Berlin (EMIL), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein-Str. 15, 12489 Berlin, Germany.
ACS Catal. 2025 Jul 8;15(14):12436-12449. doi: 10.1021/acscatal.5c01463. eCollection 2025 Jul 18.
A comprehensive investigation of the impact of hydrogen (H) pretreatments on Ga-Pt supported catalytic active liquid metal solution (SCALMS) for propane dehydrogenation (PDH) is reported. Our approach bridges from model system investigations to real-world catalytic systems, which are tested in continuously operating PDH reactors. The microscopic and spectroscopic findings on model Ga-Pt systems suggest changes in the electronic structure and surface chemistry during SCALMS sample oxidation and H pretreatment, indicating potential modifications of the active sites involved in PDH. H pretreatments of technical Ga-Pt SCALMS prepared by ultrasonication (US) led to significantly improved activity, i.e., the conversion of propane increased from 10% for the untreated catalyst to 26% for the H pretreated (5 h at 823 K) catalyst. We attribute this enhanced activity to the removal of a gallium oxide (GaO ) shell, as confirmed by synchrotron-based in situ X-ray photoelectron spectroscopy (XPS) as well as in situ transmission electron microscopy (TEM) investigations of Ga-Pt model alloys. These findings are supported by density functional theory (DFT) and machine learned force field (ML-FF) calculations. Increasing the temperature of the H treatment to 923 K reduced the deactivation rate of the catalyst to as low as 0.01 h, which is 3 times more stable than what was observed for the untreated catalyst. This deactivation is ascribed to bulk restructuring of the alloy, leading to the formation of less active Pt species as confirmed by spectroscopic and microscopic analysis. Our work not only elucidates the fundamental properties, i.e., typology, electronic structure, and reactivity, of isolated Pt atoms in Ga-Pt SCALMS but also proposes underlying mechanisms for the activation and deactivation of PDH catalysts.
本文报道了对氢气(H)预处理对用于丙烷脱氢(PDH)的镓-铂负载催化活性液态金属溶液(SCALMS)影响的全面研究。我们的方法从模型系统研究延伸至实际催化系统,这些系统在连续运行的PDH反应器中进行测试。对模型镓-铂系统的微观和光谱研究结果表明,在SCALMS样品氧化和H预处理过程中,电子结构和表面化学发生了变化,这表明参与PDH的活性位点可能发生了改变。通过超声处理(US)制备的工业镓-铂SCALMS进行H预处理后,活性显著提高,即丙烷转化率从未经处理的催化剂的10%提高到H预处理(823 K下5小时)催化剂的26%。我们将这种活性增强归因于氧化镓(GaO )壳层的去除,基于同步加速器的原位X射线光电子能谱(XPS)以及镓-铂模型合金的原位透射电子显微镜(TEM)研究证实了这一点。这些发现得到了密度泛函理论(DFT)和机器学习力场(ML-FF)计算的支持。将H处理温度提高到923 K可将催化剂的失活速率降低至低至0.01 h,这比未经处理的催化剂观察到的稳定性高3倍。这种失活归因于合金的体相重构,光谱和微观分析证实这导致形成了活性较低的铂物种。我们的工作不仅阐明了Ga-Pt SCALMS中孤立铂原子的基本性质,即类型、电子结构和反应性,还提出了PDH催化剂活化和失活的潜在机制。