Rietkerk-van der Wijngaart Mariëlle, de Jager Lynn, Scholz Geeske, Chappin Emile, de Vries Gerdien
Faculty of Technology, Policy and Management, Delft University of Technology (TU Delft), Delft, Netherlands.
Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.
Front Psychol. 2025 Jul 9;16:1568730. doi: 10.3389/fpsyg.2025.1568730. eCollection 2025.
Households are crucial in the energy transition, accounting for over 25% of the European Union's energy consumption. To design effective policy measures that motivate households to change their behavior in favor of the energy transition, agent-based models (ABMs) are vital. For ABMs to reach their full potential in policy design, they must appropriately represent behavioral dynamics. One way to accomplish this is by strengthening the fit in ABMs between behavioral determinants (e.g., trust in energy companies) and the behavior of interest (e.g., adopting tariff structures). This study investigates whether a structured behavioral analysis improves this "determinants-behavior-fit." A systematic review of 71 ABMs addressing household energy decisions reveals that models incorporating a behavioral analysis formalize nearly twice as many behavioral determinants, indicating a more systematic uptake. Subsequently, we find a difference between models focusing on investment-related behaviors (e.g., households buying solar panels) and those examining daily energy practices (e.g., households adjusting charging habits). Models in the first category integrate more social factors when incorporating behavioral analyses, corresponding with the influence of networks and peer effects on investment behaviors. Models in the second category emphasize individual and external factors in response to behavioral analyses, corresponding with the energy practices' habitual and contextual nature. Despite the benefits of a behavioral analysis for improving the determinants-behavior fit in ABMs, only one-third of the studies apply it partially. On top of that, almost half of the studies do not report a rationale for their choice of behavioral determinants. This suggests that many models may not fully capture the behavioral mechanisms underlying household energy decisions, limiting ABMs' potential to inform policymakers. Our findings highlight the need for systematic behavioral assessments in model development. We conclude that collaboration between behavioral scientists and modelers is crucial to accomplish such integration, and we emphasize the importance of allowing sufficient time and resources for meaningful exchange. Future research could further investigate empirical validation of behavioral insights in ABMs and explore how ABM results improve with a better determinants-behavior fit. By bridging behavioral science with computational modeling, ABMs' decision-support power to policymakers can be improved, ultimately accelerating the energy transition.
家庭在能源转型中至关重要,占欧盟能源消耗的25%以上。为了设计有效的政策措施来激励家庭改变行为以支持能源转型,基于主体的模型(ABM)至关重要。为了使ABM在政策设计中充分发挥潜力,它们必须恰当地体现行为动态。实现这一点的一种方法是加强ABM中行为决定因素(如对能源公司的信任)与相关行为(如采用电价结构)之间的契合度。本研究调查了结构化行为分析是否能改善这种“决定因素 - 行为契合度”。对71个涉及家庭能源决策的ABM进行的系统综述表明,纳入行为分析的模型将行为决定因素形式化的数量几乎是其他模型的两倍,这表明行为分析的采用更加系统。随后,我们发现关注投资相关行为(如家庭购买太阳能板)的模型与研究日常能源使用行为(如家庭调整充电习惯)的模型之间存在差异。第一类模型在纳入行为分析时整合了更多社会因素,这与网络和同伴效应对投资行为的影响相一致。第二类模型在行为分析中强调个人和外部因素,这与能源使用行为的习惯性和情境性本质相一致。尽管行为分析有助于改善ABM中的决定因素 - 行为契合度,但只有三分之一的研究部分应用了它。除此之外,几乎一半的研究没有报告其选择行为决定因素的理由。这表明许多模型可能没有充分捕捉家庭能源决策背后的行为机制,限制了ABM为政策制定者提供信息的潜力。我们的研究结果凸显了在模型开发中进行系统行为评估的必要性。我们得出结论,行为科学家和建模者之间的合作对于实现这种整合至关重要,并且我们强调为有意义的交流留出足够时间和资源的重要性。未来的研究可以进一步调查ABM中行为见解的实证验证,并探索更好的决定因素 - 行为契合度如何改善ABM的结果。通过将行为科学与计算建模相结合,可以提高ABM对政策制定者的决策支持能力,最终加速能源转型。