Suppr超能文献

通过深度学习、超声影像组学和临床数据的协同整合增强乳腺癌中HER-2的预测

Enhanced HER-2 prediction in breast cancer through synergistic integration of deep learning, ultrasound radiomics, and clinical data.

作者信息

Hu Meijuan, Zhang Lianying, Wang Xiao, Xiao Xuehua

机构信息

Department of Ultrasound, Affiliated Hospital, Jiujiang Medical College, Jiujiang, 332000, Jiangxi, China.

出版信息

Sci Rep. 2025 Jul 24;15(1):26992. doi: 10.1038/s41598-025-12825-7.

Abstract

This study integrates ultrasound Radiomics with clinical data to enhance the diagnostic accuracy of HER-2 expression status in breast cancer, aiming to provide more reliable treatment strategies for this aggressive disease. We included ultrasound images and clinicopathologic data from 210 female breast cancer patients, employing a Generative Adversarial Network (GAN) to enhance image clarity and segment the region of interest (ROI) for Radiomics feature extraction. Features were optimized through Z-score normalization and various statistical methods. We constructed and compared multiple machine learning models, including Linear Regression, Random Forest, and XGBoost, with deep learning models such as CNNs (ResNet101, VGG19) and Transformer technology. The Grad-CAM technique was used to visualize the decision-making process of the deep learning models. The Deep Learning Radiomics (DLR) model integrated Radiomics features with deep learning features, and a combined model further integrated clinical features to predict HER-2 status. The LightGBM and ResNet101 models showed high performance, but the combined model achieved the highest AUC values in both training and testing, demonstrating the effectiveness of integrating diverse data sources. The study successfully demonstrates that the fusion of deep learning with Radiomics analysis significantly improves the prediction accuracy of HER-2 status, offering a new strategy for personalized breast cancer treatment and prognostic assessments.

摘要

本研究将超声放射组学与临床数据相结合,以提高乳腺癌中HER-2表达状态的诊断准确性,旨在为这种侵袭性疾病提供更可靠的治疗策略。我们纳入了210例女性乳腺癌患者的超声图像和临床病理数据,采用生成对抗网络(GAN)来提高图像清晰度并分割感兴趣区域(ROI)以进行放射组学特征提取。通过Z分数标准化和各种统计方法对特征进行优化。我们构建并比较了多种机器学习模型,包括线性回归、随机森林和XGBoost,以及深度学习模型,如卷积神经网络(CNNs,ResNet101、VGG19)和Transformer技术。使用Grad-CAM技术可视化深度学习模型的决策过程。深度学习放射组学(DLR)模型将放射组学特征与深度学习特征相结合,而一个联合模型进一步整合临床特征以预测HER-2状态。LightGBM和ResNet101模型表现出高性能,但联合模型在训练和测试中均获得了最高的AUC值,证明了整合不同数据源的有效性。该研究成功表明,深度学习与放射组学分析的融合显著提高了HER-2状态的预测准确性,为个性化乳腺癌治疗和预后评估提供了一种新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验