Jakubowska Zuzanna, Gradowski Marcin, Dobrzyński Jakub
Institute of Technology and Life Sciences-National Research Institute, Falenty, 3 Hrabska Avenue, 05-090, Raszyn, Poland.
Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland.
Antonie Van Leeuwenhoek. 2025 Jul 24;118(9):123. doi: 10.1007/s10482-025-02130-8.
Biofortification of plants using Plant Growth-Promoting Bacteria (PGPB) represents a promising strategy in sustainable agriculture. This paper discusses the PGPB action in the context of their impact on phenolic compounds biosynthesis and the prospects for their application in agriculture. So far, no review article has summarized the significance of PGPB in increasing phenolic compounds in plants. PGPB, such as Pseudomonas, Bacillus, and Azospirillum, promote plant growth by producing phytohormones, enhancing nutrient availability, and stimulating the biosynthesis of secondary metabolites through the activation of Induced Systemic Resistance (ISR). The activation of ISR (Induced Systemic Resistance) by PGPB stimulates the phenylpropanoid pathway, which is the primary biosynthetic route for polyphenolic compounds, including phenolic acids and flavonoids, in plants. Studies indicate that PGPB may increase phenolic compounds content from 9% to over 200%, while simultaneously improving antioxidant activity. Through the secretion of phenolic compounds, PGPB also can mitigate abiotic stresses such as drought, salinity and heavy metal contamination. Among the phenolic compounds whose production in various plant parts can be stimulated by PGPB are flavonoids, such as quercetin, procyanidin B1, EGCG, and catechin, and phenolic acids, including caffeic acid, ferulic acid, and chlorogenic acid. Advancements in omics research will enable a more precise investigation of the impact of PGPB, including endophytic bacteria, on the biosynthetic pathways of phenolic compounds. In the future, this will translate into improved efficiency in stimulating the production of these compounds. Nevertheless, even now, the use of PGPB offers a sustainable alternative to genetic engineering, reducing reliance on chemical inputs in agriculture.
利用植物促生细菌(PGPB)对植物进行生物强化是可持续农业中一种很有前景的策略。本文讨论了PGPB在影响酚类化合物生物合成方面的作用及其在农业中的应用前景。到目前为止,还没有综述文章总结PGPB在增加植物中酚类化合物方面的意义。诸如假单胞菌、芽孢杆菌和固氮螺菌等PGPB通过产生植物激素、提高养分有效性以及通过激活诱导系统抗性(ISR)刺激次生代谢物的生物合成来促进植物生长。PGPB对ISR(诱导系统抗性)的激活刺激了苯丙烷途径,这是植物中包括酚酸和黄酮类在内的多酚化合物的主要生物合成途径。研究表明,PGPB可能使酚类化合物含量增加9%至200%以上,同时提高抗氧化活性。通过分泌酚类化合物,PGPB还可以减轻干旱、盐度和重金属污染等非生物胁迫。PGPB可以刺激各种植物部位产生的酚类化合物包括黄酮类,如槲皮素、原花青素B1、表没食子儿茶素没食子酸酯和儿茶素,以及酚酸,包括咖啡酸、阿魏酸和绿原酸。组学研究的进展将使人们能够更精确地研究PGPB(包括内生细菌)对酚类化合物生物合成途径的影响。未来,这将转化为提高刺激这些化合物产生的效率。然而,即使在现在,使用PGPB也为基因工程提供了一种可持续的替代方案,减少了农业对化学投入的依赖。