评估用于预测HIV治疗中断的机器学习模型的预测性能、有效性和适用性:一项系统综述

Evaluating predictive performance, validity, and applicability of machine learning models for predicting HIV treatment interruption: a systematic review.

作者信息

Kwarah Williams, Vroom Frances Baaba da-Costa, Dwomoh Duah, Bosomprah Samuel

机构信息

Department of Biostatistics, School of Public Health, University of Ghana, Accra, Ghana.

United States Agency for International Development (USAID), Ghana Mission, Accra, Ghana.

出版信息

BMC Glob Public Health. 2025 Jul 24;3(1):64. doi: 10.1186/s44263-025-00184-4.

Abstract

BACKGROUND

HIV treatment interruption remains a significant barrier to achieving global HIV/AIDS control goals. Machine learning (ML) models offer potential for predicting treatment interruption by leveraging large clinical data. Understanding how these models were developed, validated, and applied remains essential for advancing research.

METHODS

We searched databases including the PubMed, BMC, Cochrane Library, Scopus, ScienceDirect, Lancet, and Google Scholar, for studies published in English from 1990 to September 2024. Search terms covered HIV, machine learning, treatment interruption, and loss to follow-up. Articles were screened and reviewed independently, and data were extracted using the CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) tool. Risk of bias was assessed with Prediction model Risk Of Bias Assessment Tool (PROBAST). The Preferred Reporting Items for Systematic reviews and Meta-analysis (PRISMA) guidelines were followed throughout.

RESULTS

Out of 116,672 records, 9 studies met the inclusion criteria and reported 12 ML models. Random Forest, XGBoost, and AdaBoost were predominant models (91.7%). Internal validation was performed in all models, but only two models included external validation. Performance varied, with a mean area under the receiver operating characteristic curve (AUC-ROC) of 0.668 (standard deviation (SD) = 0.066), indicating moderate discrimination. About 75% of models showed a high risk of bias due to inadequate handling of missing data, lack of calibration, and the absence of decision curve analysis (DCA).

CONCLUSIONS

ML models show promise for predicting HIV treatment interruption, particularly in resource-limited settings. Future research should prioritize external validation, robust missing data handling, and decision curve analysis and include sociocultural predictors to improve model robustness.

SYSTEMATIC REVIEW REGISTRATION

PROSPERO CRD42024578109.

摘要

背景

艾滋病毒治疗中断仍然是实现全球艾滋病毒/艾滋病控制目标的重大障碍。机器学习(ML)模型通过利用大量临床数据,为预测治疗中断提供了潜力。了解这些模型是如何开发、验证和应用的,对于推进研究仍然至关重要。

方法

我们检索了包括PubMed、BMC、Cochrane图书馆、Scopus、ScienceDirect、《柳叶刀》和谷歌学术在内的数据库,以查找1990年至2024年9月以英文发表的研究。检索词涵盖艾滋病毒、机器学习、治疗中断和失访。文章由独立筛选和评审,并使用预测模型系统评价的关键评估和数据提取清单(CHARMS)工具提取数据。使用预测模型偏倚风险评估工具(PROBAST)评估偏倚风险。整个过程遵循系统评价和Meta分析的首选报告项目(PRISMA)指南。

结果

在116672条记录中,9项研究符合纳入标准并报告了12个ML模型。随机森林、XGBoost和AdaBoost是主要模型(91.7%)。所有模型均进行了内部验证,但只有两个模型进行了外部验证。性能各不相同,受试者工作特征曲线下的平均面积(AUC-ROC)为0.668(标准差(SD)=0.066),表明区分度中等。由于对缺失数据处理不当、缺乏校准以及未进行决策曲线分析(DCA),约75%的模型显示出高偏倚风险。

结论

ML模型在预测艾滋病毒治疗中断方面显示出前景,特别是在资源有限的环境中。未来的研究应优先进行外部验证、稳健地处理缺失数据和决策曲线分析,并纳入社会文化预测因素以提高模型的稳健性。

系统评价注册

PROSPERO CRD42024578109。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索