文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

感觉传入神经回路介导电针改善中风后吞咽困难小鼠模型的吞咽功能。

Sensory Afferent Neural Circuits Mediate Electroacupuncture to Improve Swallowing Function in a Post-Stroke Dysphagia Mouse Model.

作者信息

Dai Yong, Hu Jiahui, Wang Qianqian, Qiao Jia, Tian Yueqin, Li Chao, Chen Jiemei, Zhao Fei, Li Xinya, Liu Chunyan, Pan Ruihuan, Ou Haining, Xu Nenggui, Wen Hongmei, Dou Zulin, Ye Qiuping

机构信息

Department of Rehabilitation Medicine, Third Affiliated Hospital of sun Yat-Sen University, Guangzhou, China.

Department of Rehabilitation Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.

出版信息

CNS Neurosci Ther. 2025 Jul;31(7):e70514. doi: 10.1111/cns.70514.


DOI:10.1111/cns.70514
PMID:40708119
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12289536/
Abstract

BACKGROUND: Electroacupuncture (EA) has been reported to improve post-stroke dysphagia (PSD) effectively. However, the underlying afferent neural circuit and neurological mechanism involved in improving PSD remain poorly understood. METHODS: A PSD mouse model was established via the photochemical embolization method. Laser scatter contrast imaging was used to evaluate blood perfusion. Videofluoroscopic swallowing study, flexible endoscopic evaluation swallowing, and electromyography were used to assess the swallowing function. Neuronal activities and neuron types were detected by immunofluorescence. Synaptic connections between the nucleus tractus solitarii (NTS), the ventral posteromedial thalamic nucleus (VPM), and the primary sensory cortex (S1) were verified by neural tracing. Finally, photogenetic, chemogenetic, and in vivo electromyography or electrophysiological records were used to explore the possible afferent neural circuits of EA therapy for PSD. RESULTS: EA treatment potentiated the blood perfusion of CV23 and S1, improved the area under the curve, pharyngeal transit time, and vocal fold mobility in PSD model mice. EA also activated neuronal activities in VPM, while chemical genetic inhibition of VPM attenuated the swallowing function of EA enhanced in PSD mice. Neural tracing revealed the presence of direct synaptic connections in the neural circuit of NTS-VPM-S1, and excitatory neurons were the predominant type of synaptic projection. Activation of this circuit improved the swallowing function in PSD mice, whereas its inhibition impaired the swallowing function; this effect was reversible by EA-CV23. CONCLUSION: Our findings uncover the importance of sensory afferent neural circuits NTS-VPM-S1 in driving the protective effect of EA-CV23 against dysphagia and thus reveal a potential strategy for PSD intervention.

摘要

背景:据报道,电针(EA)可有效改善脑卒中后吞咽困难(PSD)。然而,改善PSD所涉及的潜在传入神经回路和神经机制仍知之甚少。 方法:通过光化学栓塞法建立PSD小鼠模型。采用激光散斑对比成像评估血液灌注。采用电视荧光吞咽造影研究、软性内镜吞咽功能评估和肌电图评估吞咽功能。通过免疫荧光检测神经元活动和神经元类型。通过神经示踪验证孤束核(NTS)、丘脑腹后内侧核(VPM)和初级感觉皮层(S1)之间的突触连接。最后,采用光遗传学、化学遗传学以及体内肌电图或电生理记录来探索EA治疗PSD的可能传入神经回路。 结果:EA治疗增强了CV23和S1的血液灌注,改善了PSD模型小鼠的曲线下面积、咽部通过时间和声门运动。EA还激活了VPM中的神经元活动,而对VPM进行化学遗传学抑制则减弱了PSD小鼠中EA增强的吞咽功能。神经示踪显示在NTS-VPM-S1神经回路中存在直接突触连接,且兴奋性神经元是突触投射的主要类型。激活该回路可改善PSD小鼠的吞咽功能,而抑制该回路则会损害吞咽功能;EA-CV23可逆转这种效应。 结论:我们的研究结果揭示了感觉传入神经回路NTS-VPM-S1在驱动EA-CV23对吞咽困难的保护作用中的重要性,从而揭示了一种PSD干预的潜在策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e986/12289536/54251ddcab9b/CNS-31-e70514-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e986/12289536/b5d088590fa2/CNS-31-e70514-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e986/12289536/a1539dc21129/CNS-31-e70514-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e986/12289536/f3f2f4005285/CNS-31-e70514-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e986/12289536/0b3c0bbc73a3/CNS-31-e70514-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e986/12289536/dfff302173cc/CNS-31-e70514-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e986/12289536/4d3ce61a0002/CNS-31-e70514-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e986/12289536/f876ef1ae724/CNS-31-e70514-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e986/12289536/54251ddcab9b/CNS-31-e70514-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e986/12289536/b5d088590fa2/CNS-31-e70514-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e986/12289536/a1539dc21129/CNS-31-e70514-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e986/12289536/f3f2f4005285/CNS-31-e70514-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e986/12289536/0b3c0bbc73a3/CNS-31-e70514-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e986/12289536/dfff302173cc/CNS-31-e70514-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e986/12289536/4d3ce61a0002/CNS-31-e70514-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e986/12289536/f876ef1ae724/CNS-31-e70514-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e986/12289536/54251ddcab9b/CNS-31-e70514-g005.jpg

相似文献

[1]
Sensory Afferent Neural Circuits Mediate Electroacupuncture to Improve Swallowing Function in a Post-Stroke Dysphagia Mouse Model.

CNS Neurosci Ther. 2025-7

[2]
Electroacupuncture improves swallowing function in a post-stroke dysphagia mouse model by activating the motor cortex inputs to the nucleus tractus solitarii through the parabrachial nuclei.

Nat Commun. 2023-2-13

[3]
Electroacupuncture Involved in Motor Cortex and Hypoglossal Neural Control to Improve Voluntary Swallowing of Poststroke Dysphagia Mice.

Neural Plast. 2020

[4]
Participation of the nucleus tractus solitarius in the therapeutic effect of electroacupuncture on post-stroke dysphagia through the primary motor cortex.

CNS Neurosci Ther. 2024-3

[5]
Pharyngeal Cavity Electrical Stimulation-Assisted Swallowing for Post-stroke Dysphagia: A Systematic Review and Meta-analysis of Randomized Controlled Studies.

Dysphagia. 2024-8

[6]
Role of TRPV1 in electroacupuncture-mediated signal to the primary sensory cortex during regulation of the swallowing function.

CNS Neurosci Ther. 2024-3

[7]
Electroacupuncture at ST36 ameliorates gastric dysmotility in rats with diabetic gastroparesis the nucleus tractus solitarius-vagal axis.

World J Gastroenterol. 2025-6-7

[8]
The association of temporalis muscle thickness with post-stroke dysphagia based on swallowing kinematic analysis.

J Formos Med Assoc. 2024-8-14

[9]
Interventions for dysphagia in long-term, progressive muscle disease.

Cochrane Database Syst Rev. 2016-2-9

[10]
Morphological analysis and functional connectivity of the insular in patients with dysphagia after cerebral infarction based on resting-state fMRI.

BMC Neurol. 2025-7-30

本文引用的文献

[1]
New and Evolving Treatments for Neurologic Dysphagia.

Drugs. 2024-8

[2]
Vocal Fold Motion Impairment in Neurodegenerative Diseases.

J Clin Med. 2024-4-24

[3]
Dysphagia after stroke: research advances in treatment interventions.

Lancet Neurol. 2024-4

[4]
Management and Treatment for Dysphagia in Neurodegenerative Disorders.

J Clin Med. 2023-12-27

[5]
Systematic review and meta-analysis of the efficacy and safety of electroacupuncture for poststroke dysphagia.

Front Neurol. 2023-12-6

[6]
A Better PIL to Swallow: A Thalamic Node in the Social Brain Network.

Biol Psychiatry. 2024-1-15

[7]
Exploring the thalamus: a crucial hub for brain function and communication in patients with bulimia nervosa.

J Eat Disord. 2023-11-20

[8]
Thermosensory thalamus: parallel processing across model organisms.

Front Neurosci. 2023-10-13

[9]
Videofluoroscopic swallow study and fiberoptic endoscopic evaluation of swallow, which is superior?

Laryngoscope. 2023-10

[10]
Role of TRPV1 in electroacupuncture-mediated signal to the primary sensory cortex during regulation of the swallowing function.

CNS Neurosci Ther. 2024-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索