Suppr超能文献

基于深度学习的多足部畸形分类地标检测模型:一项双中心研究。

Deep Learning-Based Landmark Detection Model for Multiple Foot Deformity Classification: A Dual-Center Study.

作者信息

Lee Su Ji, Yoon Hangyul, Bae Seongsu, Paik Inyoung, Moon Jong Hak, Park Seongeun, Jang Chan Woong, Park Jung Hyun, Choi Edward, Yang Eunho, Shin Ji Cheol

机构信息

Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea.

Kim Jaechul Graduate School of AI, Korea Advanced Institute of Science and Technology, Daejeon, Korea.

出版信息

Yonsei Med J. 2025 Aug;66(8):491-501. doi: 10.3349/ymj.2024.0246.

Abstract

PURPOSE

To introduce heatmap-in-heatmap (HIH)-based model for automated diagnosis of foot deformities using weight-bearing foot radiographs, aiming to address the labor-intensive and variable nature of manual diagnosis.

MATERIALS AND METHODS

From January 2004 to September 2022, a dual-center retrospective study was conducted. In the first center, 1561 anterior-posterior (AP) and 1536 lateral images from 806 patients were used for model training, while 374 AP and 373 lateral images from 196 patients were allocated to the validation set. For external validation at the second center, 527 AP and 529 lateral images from 270 patients were allocated. Five deformities were diagnosed using four and three angles between the predicted landmarks in the AP and lateral images, respectively. The results were compared with those of the baseline model (FlatNet).

RESULTS

The HIH model demonstrated robust performance in diagnosing multiple foot deformities. On the test set, it outperformed FlatNet with higher accuracy (FlatNet vs. HIH: 78.9% vs. 85.1%), sensitivity (78.9% vs. 84.1%), specificity (79.0% vs. 85.9%), positive predictive value (77.3% vs. 84.4%), and negative predictive value (80.5% vs. 85.7%). Additionally, HIH exhibited significantly lower absolute pixel and angle errors, lower normalized mean errors, higher successful detection rate, faster training and inference speeds, and fewer parameters.

CONCLUSION

The HIH model showed robust performance in diagnosing multiple foot deformities with high efficacy in internal and external validation. Our approach is expected to be effective for various tasks using landmarks in medical imaging.

摘要

目的

介绍一种基于热图中热图(HIH)的模型,用于利用负重足部X光片自动诊断足部畸形,旨在解决手动诊断劳动强度大且结果可变的问题。

材料与方法

2004年1月至2022年9月进行了一项双中心回顾性研究。在第一个中心,来自806例患者的1561张前后位(AP)和1536张侧位图像用于模型训练,而来自196例患者的374张AP图像和373张侧位图像被分配到验证集。为了在第二个中心进行外部验证,分配了来自270例患者的527张AP图像和529张侧位图像。分别使用AP和侧位图像中预测地标之间的四个和三个角度来诊断五种畸形。将结果与基线模型(FlatNet)的结果进行比较。

结果

HIH模型在诊断多种足部畸形方面表现出强大的性能。在测试集上,它的准确率(FlatNet vs. HIH:78.9% vs. 85.1%)、灵敏度(78.9% vs. 84.)、特异性(79.0% vs. 85.9%)、阳性预测值(77.3% vs. 84.4%)和阴性预测值(80.5% vs. 85.7%)均高于FlatNet。此外,HIH的绝对像素和角度误差显著更低,归一化平均误差更低,成功检测率更高,训练和推理速度更快,参数更少。

结论

HIH模型在诊断多种足部畸形方面表现出强大的性能,在内部和外部验证中均具有高效性。我们的方法有望对医学成像中使用地标的各种任务有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4513/12303672/2a8c9066daac/ymj-66-491-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验