Qin Zhizhen, Ahmed Jehad, Speer Sebastian, Danilov Dmitri L, Windmüller Anna, Yu Shicheng, Tsai Chih-Long, Tempel Hermann, Granwehr Josef, Wu Wen-Wei, Chang Jeng-Kuei, Eichel Rüdiger-A, Notten Peter H L
Institute of Energy Technologies: Fundamental Electrochemistry (IET-1), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany.
Institute of Physical Chemistry, RWTH Aachen University, 52074, Aachen, Germany.
Adv Sci (Weinh). 2025 Jul 25:e08750. doi: 10.1002/advs.202508750.
Garnet-structured LiLaZrO (LLZO) is considered as one of the most promising solid electrolytes for high safety all-solid-state Li batteries (SSLBs) applications. However, this type of SSLB utilizing LiCoO/LLZO as composite cathode faces high capacity degradation because of delamination between LiCoO (LCO) and LLZO and possible oxygen vacancy-driven microcrack formation within LCO. Herein, a pure oxygen atmosphere is used for sintering the composite cathode to limit oxygen vacancy formation in LCO. Different sintering temperatures are also used to reduce the effect of sintering atmospheres, which suggests the non-reversible oxidation peak at ∼3.8 V is not related to LiCO formation. Although the Coulombic efficiencies of the first electrochemical cycle of SSLBs sintered in pure oxygen atmosphere are improved, their electrochemical performances are lower than that of air-sintered SSLB due to higher cell resistances from the reduction of oxygen vacancies in LCO and possible higher volume change during electrochemical cycling. Also, the lower electrochemical cycling performance and observing tens of micrometers long inter-granular cracks in the highly dense composite cathode suggests that microstructural optimization is more important than a high relative density. These observations provide guidelines for further improving the electrochemical cycling performance of garnet-structure-based SSLBs toward practical applications.
石榴石结构的LiLaZrO(LLZO)被认为是用于高安全性全固态锂电池(SSLB)应用的最有前景的固体电解质之一。然而,这种以LiCoO/LLZO为复合阴极的SSLB由于LiCoO(LCO)与LLZO之间的分层以及LCO内部可能由氧空位驱动的微裂纹形成而面临高容量降解问题。在此,使用纯氧气氛烧结复合阴极以限制LCO中氧空位的形成。还采用不同的烧结温度来降低烧结气氛的影响,这表明约3.8V处的不可逆氧化峰与LiCO的形成无关。尽管在纯氧气氛中烧结的SSLB的第一个电化学循环的库仑效率有所提高,但由于LCO中氧空位减少导致的较高电池电阻以及电化学循环过程中可能更大的体积变化,其电化学性能低于在空气中烧结的SSLB。此外,较低的电化学循环性能以及在高度致密的复合阴极中观察到数十微米长的晶间裂纹表明,微观结构优化比高相对密度更重要。这些观察结果为进一步提高基于石榴石结构的SSLB在实际应用中的电化学循环性能提供了指导。