Murin Peyton J, Prabhune Anagha S, Martins Yuri Chaves
Department of Neurology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
Department of Anesthesiology, Saint Louis University School of Medicine, St. Louis, MO 63110, USA.
Clin Pract. 2025 Jul 17;15(7):132. doi: 10.3390/clinpract15070132.
: Deep brain stimulation (DBS) is an effective surgical treatment for Parkinson's Disease (PD) and other movement disorders. Despite its benefits, DBS explantation occurs in 5.6% of cases, with costs exceeding USD 22,000 per implant. Traditional statistical methods have struggled to identify reliable risk factors for explantation. We hypothesized that supervised machine learning would more effectively capture complex interactions among perioperative factors, enabling the identification of novel risk factors. : The Medical Informatics Operating Room Vitals and Events Repository was queried for patients with DBS, adequate clinical data, and at least two years of follow-up ( = 38). Fisher's exact test assessed demographic and medical history variables. Data were analyzed using Anaconda Version 2.3.1. with pandas, numpy, sklearn, sklearn-extra, matplotlin. pyplot, and seaborn. Recursive feature elimination with cross-validation (RFECV) optimized factor selection was used. A multivariate logistic regression model was trained and evaluated using precision, recall, F1-score, and area under the curve (AUC). : Fisher's exact test identified chronic pain ( = 0.0108) and tobacco use ( = 0.0026) as risk factors. RFECV selected 24 optimal features. The logistic regression model demonstrated strong performance (precision: 0.89, recall: 0.86, F1-score: 0.86, AUC: 1.0). Significant risk factors included tobacco use (OR: 3.64; CI: 3.60-3.68), primary PD (OR: 2.01; CI: 1.99-2.02), ASA score (OR: 1.91; CI: 1.90-1.92), chronic pain (OR: 1.82; CI: 1.80-1.85), and diabetes (OR: 1.63; CI: 1.62-1.65). : Our study suggests that supervised machine learning can identify risk factors for early DBS explantation. Larger studies are needed to validate our findings.
深部脑刺激(DBS)是治疗帕金森病(PD)和其他运动障碍的一种有效手术疗法。尽管有诸多益处,但DBS植入物取出术在5.6%的病例中会发生,每次植入的费用超过22,000美元。传统统计方法一直难以确定可靠的植入物取出风险因素。我们推测,监督式机器学习能够更有效地捕捉围手术期因素之间的复杂相互作用,从而识别出新的风险因素。
在医学信息手术室生命体征与事件数据库中查询接受DBS治疗、有足够临床数据且至少随访两年的患者(n = 38)。采用Fisher精确检验评估人口统计学和病史变量。使用Anaconda 2.3.1版本,结合pandas、numpy、sklearn、sklearn - extra、matplotlib.pyplot和seaborn对数据进行分析。采用带交叉验证的递归特征消除法(RFECV)优化因素选择。使用精度、召回率、F1分数和曲线下面积(AUC)对多元逻辑回归模型进行训练和评估。
Fisher精确检验确定慢性疼痛(p = 0.0108)和吸烟(p = 0.0026)为风险因素。RFECV选择了24个最佳特征。逻辑回归模型表现出色(精度:0.89,召回率:0.86,F1分数:0.86,AUC:1.0)。显著的风险因素包括吸烟(比值比:3.64;可信区间:3.60 - 3.68)、原发性PD(比值比:2.01;可信区间:1.99 - 2.02)、美国麻醉医师协会(ASA)评分(比值比:1.91;可信区间:1.90 - 1.92)、慢性疼痛(比值比:1.82;可信区间:1.80 - 1.85)和糖尿病(比值比:1.63;可信区间:1.62 - 1.65)。
我们的研究表明,监督式机器学习能够识别早期DBS植入物取出的风险因素。需要开展更大规模的研究来验证我们的研究结果。
Cochrane Database Syst Rev. 2008-7-16
Cochrane Database Syst Rev. 2018-6-4
Front Hum Neurosci. 2023-11-30
Front Aging Neurosci. 2023-11-17
Acta Neurochir (Wien). 2023-11
Neurotherapeutics. 2022-7