Kawai Toshiyuki
Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
Biomimetics (Basel). 2025 Jun 20;10(7):412. doi: 10.3390/biomimetics10070412.
Large segmental bone defects present significant challenges due to the insufficient vascularization of implanted grafts, necessitating advances in vascularized bone tissue engineering. Recent innovations focus primarily on enhancing graft vascularization through advanced biomaterial scaffolds, precise three-dimensional (3D) bioprinting technologies, biochemical interventions, and co-culture techniques. Biomaterial scaffolds featuring microchannels and high-surface-area architectures facilitate endothelial cell infiltration and subsequent vessel formation. Concurrently, sophisticated 3D-bioprinting methods, including inkjet, extrusion, and laser-assisted approaches, enable the precise placement of endothelial and osteogenic cells, promoting anatomically accurate vascular networks. Biochemical strategies that utilize the simultaneous delivery of angiogenic factors (e.g., vascular endothelial growth factor) and osteogenic factors (e.g., bone morphogenetic protein-2) effectively couple angiogenesis and osteogenesis. Additionally, co-culturing mesenchymal stem cells and endothelial progenitors accelerates the development of functional capillary networks. Preclinical studies consistently demonstrate superior outcomes for prevascularized grafts, as evidenced by enhanced vascular inosculation, increased bone formation, and improved mechanical stability compared to non-vascularized controls. These technological advancements collectively represent significant progress toward the clinical translation of engineered vascularized bone grafts capable of addressing complex and previously intractable bone defects.
由于植入移植物的血管化不足,大段骨缺损带来了重大挑战,这就需要在血管化骨组织工程方面取得进展。最近的创新主要集中在通过先进的生物材料支架、精确的三维(3D)生物打印技术、生化干预和共培养技术来增强移植物的血管化。具有微通道和高表面积结构的生物材料支架有助于内皮细胞浸润和随后的血管形成。同时,复杂的3D生物打印方法,包括喷墨、挤压和激光辅助方法,能够精确放置内皮细胞和成骨细胞,促进解剖学上精确的血管网络形成。利用同时递送血管生成因子(如血管内皮生长因子)和成骨因子(如骨形态发生蛋白-2)的生化策略有效地将血管生成和成骨结合起来。此外,将间充质干细胞和内皮祖细胞共培养可加速功能性毛细血管网络的发育。临床前研究一致表明,与未血管化的对照相比,预血管化移植物具有更好的效果,表现为血管吻合增强、骨形成增加和机械稳定性改善。这些技术进步共同代表了在能够解决复杂且以前难以处理的骨缺损的工程化血管化骨移植物的临床转化方面取得的重大进展。