Zou Feng, Wang Xia, Zhang Weilin, Shi Qingshui, Yang Huogen
School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China.
Jiangxi Provincial Key Laboratory of Multidimension Intelligent Perception and Control, Jiangxi University of Science and Technology, Ganzhou 341000, China.
Biomimetics (Basel). 2025 Jun 26;10(7):416. doi: 10.3390/biomimetics10070416.
Within computer-aided geometric design (CAGD), Said-Ball curves are primarily adopted in domains such as 3D object skeleton modeling, vascular structure repair, and path planning, owing to their flexible geometric properties. Techniques for curve degree reduction seek to reduce computational and storage demands while striving to maintain the essential geometric attributes of the original curve. This study presents a novel degree reduction model leveraging Euclidean distance and curvature data, markedly improving the preservation of geometric features throughout the reduction process. To enhance performance further, we propose a multi-strategy enhanced coati optimization algorithm (MSECOA). This algorithm utilizes a good point set combined with opposition-based learning to refine the initial population distribution, employs a fitness-distance equilibrium approach alongside a dynamic spiral search strategy to harmonize global exploration with local exploitation, and integrates an adaptive differential evolution mechanism to boost convergence rates and robustness. Experimental results demonstrate that the MSECOA outperforms nine highly cited agorithms in terms of convergence performance, solution accuracy, and stability. The algorithm exhibits superior behavior on the IEEE CEC2017 and CEC2022 benchmark functions and demonstrates strong practical utility across four engineering optimization problems with constraints. When applied to multi-degree reduction approximation of Said-Ball curves, the algorithm's effectiveness is substantiated through four reduction cases, highlighting its superior precision and computational efficiency, thus providing a highly effective and accurate solution for complex curve degree reduction tasks.
在计算机辅助几何设计(CAGD)领域,由于其灵活的几何特性,赛德 - 鲍尔曲线主要应用于三维物体骨架建模、血管结构修复和路径规划等领域。曲线降阶技术旨在减少计算和存储需求,同时努力保持原始曲线的基本几何属性。本研究提出了一种利用欧几里得距离和曲率数据的新型降阶模型,在整个降阶过程中显著提高了几何特征的保留率。为了进一步提高性能,我们提出了一种多策略增强浣熊优化算法(MSECOA)。该算法利用一个好点集结合基于对立的学习来优化初始种群分布,采用适应度 - 距离平衡方法并结合动态螺旋搜索策略来协调全局探索与局部开发,并集成了自适应差分进化机制以提高收敛速度和鲁棒性。实验结果表明,MSECOA在收敛性能、解的准确性和稳定性方面优于九种高引用算法。该算法在IEEE CEC2017和CEC2022基准函数上表现优异,并在四个有约束的工程优化问题中展示了强大的实用价值。当应用于赛德 - 鲍尔曲线的多阶降阶逼近时,通过四个降阶案例证实了该算法的有效性,突出了其卓越的精度和计算效率,从而为复杂曲线降阶任务提供了一种高效且准确的解决方案。