Tang Wanru, Qin Haoze, Kang Shuang
School of Mechanical and Control Engineering, Baicheng Normal University, Baicheng, 137000, PR China.
School of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin City, 132022, PR China.
Sci Rep. 2025 Jul 21;15(1):26389. doi: 10.1038/s41598-025-02937-5.
As a swarm intelligence algorithm, Dung beetle optimizer (DBO) was inspired by the behavior pattern of dung beetles for survival. This paper presents a dung beetle optimizer based on mean fitness distance balance and multi-strategy fusion (MMDBO), which addresses the slow convergence and weak global search of the original DBO. MMDBO improves performance by incorporating a cosine similarity strategy for position updates, enhancing convergence speed and diversity. The MFDB strategy is then applied to balance global exploration with local exploitation. Additionally, the Hypotrochoid and Levy flight strategies are used to enhance search ability and solution quality, while a non-uniform mutation strategy is introduced to avoid local optima. To comprehensively evaluate the optimizer performance of MMDBO, experiments were conducted on the IEEE CEC2017 and CEC2022 benchmark sets, comparing it with 13 other population-based optimizer algorithms. The experimental results show that MMDBO achieves Friedman mean rankings of 1.21, 1.52, and 1.52 for the 30-dimensional, 50-dimensional, and 100-dimensional problems on the CEC2017 benchmark set, respectively, and a ranking of 1.5 for the 20-dimensional problem on the CEC2022 benchmark set. These results indicate that MMDBO consistently outperforms most algorithms and provides accurate and reliable optimizer solutions. Additionally, MMDBO's practicality is demonstrated through five real-world constrained engineering design challenges, including a wind farm layout optimizer problem and a magnesium alloy constitutive model parameter identification problem, further validating its broad applicability in real engineering problems. The results of the study indicate that MMDBO possesses excellent optimizer capacity and broad application potential.
作为一种群体智能算法,蜣螂优化器(DBO)的灵感来源于蜣螂的生存行为模式。本文提出了一种基于平均适应度距离平衡和多策略融合的蜣螂优化器(MMDBO),它解决了原始DBO收敛速度慢和全局搜索能力弱的问题。MMDBO通过纳入用于位置更新的余弦相似性策略来提高性能,增强收敛速度和多样性。然后应用MFDB策略来平衡全局探索和局部开发。此外,摆线和莱维飞行策略用于增强搜索能力和解决方案质量,同时引入非均匀变异策略以避免局部最优。为了全面评估MMDBO的优化器性能,在IEEE CEC2017和CEC2022基准集上进行了实验,并将其与其他13种基于群体的优化器算法进行了比较。实验结果表明,在CEC2017基准集上,MMDBO对于30维、50维和100维问题分别获得了1.21、1.52和1.52的弗里德曼平均排名,在CEC2022基准集上对于20维问题获得了1.5的排名。这些结果表明,MMDBO始终优于大多数算法,并提供准确可靠的优化器解决方案。此外,通过五个实际的约束工程设计挑战,包括风电场布局优化问题和镁合金本构模型参数识别问题,证明了MMDBO的实用性,进一步验证了其在实际工程问题中的广泛适用性。研究结果表明,MMDBO具有出色的优化器能力和广阔的应用潜力。