Özakar Rüstem, Gedikli Eyüp
Deparment of Computer Engineering, Faculty of Engineering and Architecture, Erzurum Technical University, Erzurum 25100, Turkey.
Deparment of Computer Engineering, Faculty of Computer and Information Sciences, Trabzon University, Trabzon 61300, Turkey.
J Imaging. 2025 Jun 22;11(7):208. doi: 10.3390/jimaging11070208.
Hand hygiene is paramount for public health, especially in critical sectors like healthcare and the food industry. Ensuring compliance with recommended hand washing gestures is vital, necessitating autonomous evaluation systems leveraging machine learning techniques. However, the scarcity of comprehensive datasets poses a significant challenge. This study addresses this issue by presenting an open synthetic hand washing dataset, created using 3D computer-generated imagery, comprising 96,000 frames (equivalent to 64 min of footage), encompassing eight gestures performed by four characters in four diverse environments. This synthetic dataset includes RGB images, depth/isolated depth images and hand mask images. Using this dataset, four neural network models, Inception-V3, Yolo-8n, Yolo-8n segmentation and PointNet, were trained for gesture classification. The models were subsequently evaluated on a large real-world hand washing dataset, demonstrating successful classification accuracies of 56.9% for Inception-V3, 76.3% for Yolo-8n and 79.3% for Yolo-8n segmentation. These findings underscore the effectiveness of synthetic data in training machine learning models for hand washing gesture recognition.
手部卫生对公众健康至关重要,尤其是在医疗保健和食品行业等关键领域。确保遵守推荐的洗手姿势至关重要,这就需要利用机器学习技术的自主评估系统。然而,缺乏全面的数据集构成了重大挑战。本研究通过呈现一个开放的合成洗手数据集来解决这一问题,该数据集使用3D计算机生成图像创建,包含96,000帧(相当于64分钟的视频片段),涵盖四个角色在四种不同环境中执行的八种手势。这个合成数据集包括RGB图像、深度/孤立深度图像和手部掩码图像。使用这个数据集,对四个神经网络模型Inception-V3、Yolo-8n、Yolo-8n分割和PointNet进行了手势分类训练。随后在一个大型真实世界洗手数据集上对这些模型进行了评估,结果表明Inception-V3的分类准确率为56.9%,Yolo-8n为76.3%,Yolo-8n分割为79.3%。这些发现强调了合成数据在训练用于洗手手势识别的机器学习模型方面的有效性。