Suppr超能文献

通过生成对抗网络探索生物图像合成与检测:一个多方面的案例研究

Exploring Bioimage Synthesis and Detection via Generative Adversarial Networks: A Multi-Faceted Case Study.

作者信息

Sorgente Valeria, Biagiucci Dante, Cesarelli Mario, Brunese Luca, Santone Antonella, Martinelli Fabio, Mercaldo Francesco

机构信息

Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy.

Department of Engineering, University of Sannio, 82100 Benevento, Italy.

出版信息

J Imaging. 2025 Jun 27;11(7):214. doi: 10.3390/jimaging11070214.

Abstract

BACKGROUND

Generative Adversarial Networks (GANs), thanks to their great versatility, have a plethora of applications in biomedical imaging with the goal of simulating complex pathological conditions and creating clinical data used for training advanced machine learning models. The ability to generate high-quality synthetic clinical data not only addresses issues related to the scarcity of annotated bioimages but also supports the continuous improvement of diagnostic tools.

METHOD

We propose a two-step method aimed to detect whether a bioimage can be considered fake or real. The first step is related to bioimage generation using a Deep Convolutional GAN, while the second step involves the training and testing of a set of machine learning models aimed to distinguish between real and generated bioimages.

RESULTS

We evaluate our approach by exploiting six different datasets. We observe notable results, demonstrating the ability of Deep Convolutional GAN to generate realistic synthetic images for some specific bioimages. However, for other bioimages, the accuracy does not align with the expected trend, indicating challenges in generating images that closely resemble real ones.

CONCLUSIONS

This study highlights both the potential and limitations of GAN in generating realistic bioimages. Future work will focus on improving generation quality and detection accuracy across different datasets.

摘要

背景

生成对抗网络(GAN)因其具有很强的通用性,在生物医学成像领域有大量应用,旨在模拟复杂的病理状况并创建用于训练先进机器学习模型的临床数据。生成高质量合成临床数据的能力不仅解决了与标注生物图像稀缺相关的问题,还支持诊断工具的持续改进。

方法

我们提出一种两步法,旨在检测生物图像是假还是真。第一步涉及使用深度卷积GAN生成生物图像,而第二步包括训练和测试一组旨在区分真实生物图像和生成生物图像的机器学习模型。

结果

我们通过利用六个不同数据集评估了我们的方法。我们观察到显著结果,证明深度卷积GAN能够为某些特定生物图像生成逼真的合成图像。然而,对于其他生物图像,准确率与预期趋势不一致,这表明生成与真实图像非常相似的图像存在挑战。

结论

本研究突出了GAN在生成逼真生物图像方面的潜力和局限性。未来的工作将专注于提高不同数据集上的生成质量和检测准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验