Suppr超能文献

MAN-GAN:一种基于掩码自适应归一化的生成对抗网络,用于肝脏多期CT图像生成。

MAN-GAN: a mask-adaptive normalization based generative adversarial networks for liver multi-phase CT image generation.

作者信息

Zhao Wei, Chen Wenting, Fan Li, Shang Youlan, Wang Yisong, Situ Weijun, Li Wenzheng, Liu Tianming, Yuan Yixuan, Liu Jun

机构信息

Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.

Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

出版信息

Sci Rep. 2025 Jul 22;15(1):26637. doi: 10.1038/s41598-025-10754-z.

Abstract

Liver multiphase enhanced computed tomography (MPECT) is vital in clinical practice, but its utility is limited by various factors. We aimed to develop a deep learning network capable of automatically generating MPECT images from standard non-contrast CT scans. Dataset 1 included 374 patients and was divided into three parts: a training set, a validation set and a test set. Dataset 2 included 144 patients with one specific liver disease and was used as an internal test dataset. We further collected another dataset comprising 83 patients for external validation. Then, we propose a Mask-Adaptive Normalization-based Generative Adversarial Network with Cycle-Consistency Loss (MAN-GAN) to achieve non-contrast CT to MPECT translation. To assess the efficiency of MAN-GAN, we conducted a comparative analysis with state-of-the-art methods commonly employed in diverse medical image synthesis tasks. Moreover, two subjective radiologist evaluation studies were performed to verify the clinical usefulness of the generated images. MAN-GAN outperformed the baseline network and other state-of-the-art methods in all generations of the three phases. These results were verified in internal and external datasets. According to radiological evaluation, the image quality of generated three phase images are all above average. Moreover, the similarities between real images and generated images in all three phases are satisfactory. MAN-GAN demonstrates the feasibility of liver MPECT image translation based on non-contrast images and achieves state-of-the-art performance via the subtraction strategy. It has great potential for solving the dilemma of liver CT contrast canning and aiding further liver interaction clinical scenarios.

摘要

肝脏多期增强计算机断层扫描(MPECT)在临床实践中至关重要,但其效用受到多种因素的限制。我们旨在开发一种深度学习网络,能够从标准的非增强CT扫描中自动生成MPECT图像。数据集1包括374名患者,分为三个部分:训练集、验证集和测试集。数据集2包括144名患有一种特定肝脏疾病的患者,用作内部测试数据集。我们进一步收集了另一个包含83名患者的数据集用于外部验证。然后,我们提出了一种基于掩码自适应归一化的具有循环一致性损失的生成对抗网络(MAN-GAN),以实现从非增强CT到MPECT的转换。为了评估MAN-GAN的效率,我们与各种医学图像合成任务中常用的先进方法进行了对比分析。此外,还进行了两项主观放射科医生评估研究,以验证生成图像的临床实用性。在三个阶段的所有生成中,MAN-GAN均优于基线网络和其他先进方法。这些结果在内部和外部数据集中得到了验证。根据放射学评估,生成的三相图像的图像质量均高于平均水平。此外,所有三个阶段的真实图像与生成图像之间的相似度都令人满意。MAN-GAN证明了基于非增强图像进行肝脏MPECT图像转换的可行性,并通过减法策略实现了先进的性能。它在解决肝脏CT造影剂罐装难题以及辅助进一步的肝脏交互临床场景方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f99f/12284013/572e75eec035/41598_2025_10754_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验