文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

热敏水凝胶的全面综述:作用机制、优化策略及应用

A Comprehensive Review of Thermosensitive Hydrogels: Mechanism, Optimization Strategies, and Applications.

作者信息

Lv Tianyang, Chen Yuzhu, Li Ning, Liao Xiaoyu, Heng Yumin, Guo Yayuan, Hu Kaijin

机构信息

Xian Key Laboratory for the Prevention and Control of Stomatognathic System Disorders, School of Stomatology, Xi'an Medical University, Xi'an 710021, China.

Research Center of Dental and Maxillofacial Tissue Regeneration and Repair Technology, School of Stomatology, Xi'an Medical University, Xi'an 710021, China.

出版信息

Gels. 2025 Jul 14;11(7):544. doi: 10.3390/gels11070544.


DOI:10.3390/gels11070544
PMID:40710706
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12294456/
Abstract

Thermosensitive hydrogels undergo reversible sol-gel phase transitions in response to changes in temperature. Owing to their excellent biocompatibility, mild reaction conditions, and controllable gelation properties, these hydrogels represent a promising class of biomaterials suitable for minimally invasive treatment systems in diverse biomedical applications. This review systematically summarizes the gelation mechanisms of thermosensitive hydrogels and optimization strategies to enhance their performance for broader application requirements. In particular, we highlight recent advances in injectable thermosensitive hydrogels as a carrier within stem cells, bioactive substances, and drug delivery for treating various tissue defects and diseases involving bone, cartilage, and other tissues. Furthermore, we propose challenges and directions for the future development of thermosensitive hydrogels. These insights provide new ideas for researchers to explore novel thermosensitive hydrogels for tissue repair and disease treatment.

摘要

热敏水凝胶会随着温度变化发生可逆的溶胶-凝胶相变。由于其具有出色的生物相容性、温和的反应条件以及可控的凝胶化特性,这些水凝胶代表了一类很有前景的生物材料,适用于各种生物医学应用中的微创治疗系统。本综述系统地总结了热敏水凝胶的凝胶化机制以及优化策略,以提高其性能以满足更广泛的应用需求。特别地,我们重点介绍了可注射热敏水凝胶作为干细胞、生物活性物质载体以及用于治疗涉及骨骼、软骨和其他组织的各种组织缺损和疾病的药物递送方面的最新进展。此外,我们提出了热敏水凝胶未来发展面临的挑战和方向。这些见解为研究人员探索用于组织修复和疾病治疗的新型热敏水凝胶提供了新思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd9/12294456/b79db906a016/gels-11-00544-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd9/12294456/88c2187cc63d/gels-11-00544-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd9/12294456/cd173e6aac4e/gels-11-00544-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd9/12294456/6492b333ca09/gels-11-00544-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd9/12294456/20747243fddc/gels-11-00544-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd9/12294456/f3675b1a5a60/gels-11-00544-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd9/12294456/729f6f8cc51f/gels-11-00544-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd9/12294456/adb9a0e31c2f/gels-11-00544-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd9/12294456/64bdb47e722c/gels-11-00544-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd9/12294456/1404f5fe8d28/gels-11-00544-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd9/12294456/b79db906a016/gels-11-00544-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd9/12294456/88c2187cc63d/gels-11-00544-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd9/12294456/cd173e6aac4e/gels-11-00544-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd9/12294456/6492b333ca09/gels-11-00544-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd9/12294456/20747243fddc/gels-11-00544-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd9/12294456/f3675b1a5a60/gels-11-00544-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd9/12294456/729f6f8cc51f/gels-11-00544-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd9/12294456/adb9a0e31c2f/gels-11-00544-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd9/12294456/64bdb47e722c/gels-11-00544-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd9/12294456/1404f5fe8d28/gels-11-00544-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd9/12294456/b79db906a016/gels-11-00544-g010.jpg

相似文献

[1]
A Comprehensive Review of Thermosensitive Hydrogels: Mechanism, Optimization Strategies, and Applications.

Gels. 2025-7-14

[2]
Recent Advances on Chitosan-Based Thermosensitive Hydrogels for Skin Wound Treatment.

Biology (Basel). 2025-5-27

[3]
Recent advances in peptide-based bioactive hydrogels for nerve repair and regeneration: from material design to fabrication, functional tailoring and applications.

J Mater Chem B. 2024-2-28

[4]
A review of thermosensitive polysaccharide-based composite hydrogels for therapeutic applications.

Int J Biol Macromol. 2025-8

[5]
Elucidating Mechanisms of Gelation, Fiber Assembly, and Stability of Injectable Decellularized Extracellular Matrix Biomaterials.

Biopolymers. 2025-7

[6]
3D Bioprinting of Graphene Oxide-Incorporated Hydrogels for Neural Tissue Regeneration.

3D Print Addit Manuf. 2024-12-16

[7]
Succinimidyl Alginate-Modified Fibrin Hydrogels from Human Plasma for Skin Tissue Engineering.

Gels. 2025-7-11

[8]
Property-tailoring chemical modifications of hyaluronic acid for regenerative medicine applications.

Acta Biomater. 2025-7-1

[9]
The Promising Hydrogel Candidates for Preclinically Treating Diabetic Foot Ulcer: A Systematic Review and Meta-Analysis.

Adv Wound Care (New Rochelle). 2023-1

[10]
Injectable hybrid hydrogel-mediated calcium-sensing receptor (CaSR) activation for enhanced osteogenesis and bone remodeling.

Biomater Sci. 2025-7-21

本文引用的文献

[1]
Nasal Delivery of Engineered Exosomes via a Thermo-Sensitive Hydrogel Depot Reprograms Glial Cells for Spinal Cord Repair.

Adv Sci (Weinh). 2025-6-20

[2]
Chitosan-Based Gel Development: Extraction, Gelation Mechanisms, and Biomedical Applications.

Gels. 2025-4-6

[3]
High-efficiency antioxidant ROS-responsive thermosensitive hydrogel encapsulated Fenofibrate for the treatment of corneal neovascularization.

J Control Release. 2025-6-10

[4]
Responsive Microneedles for Diagnostic and Therapeutic Applications of Ocular Diseases.

Small Methods. 2025-7

[5]
Active microneedle patch equipped with spontaneous bubble generation for enhanced rheumatoid arthritis treatment.

Theranostics. 2025-2-24

[6]
Effect of adipose-derived stem cells exosomes cross-linked chitosan-αβ-glycerophosphate thermosensitive hydrogel on deep burn wounds.

World J Stem Cells. 2025-2-26

[7]
Advances in 3D and 4D Printing of Gel-Based Foods: Mechanisms, Applications, and Future Directions.

Gels. 2025-1-27

[8]
Skin-inspired polysaccharide-based hydrogels with tailored properties for information transmission application.

Int J Biol Macromol. 2025-5

[9]
Engineering Multiresponsive Alginate/PNIPAM/Carbon Nanotube Nanocomposite Hydrogels as On-Demand Drug Delivery Platforms.

Small. 2025-3

[10]
Injectable Nanocomposite Hydrogel for Accelerating Diabetic Wound Healing Through Inflammatory Microenvironment Regulation.

Int J Nanomedicine. 2025-2-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索