Yang Jianhui, Fan Shenghai, Hou Haijun, Fan Qiang
College of Physics and Optoelectronic Engineering, Leshan Normal University, Leshan 614004, China.
Leshan West Silicon Materials Photovoltaic New Energy Industry Technology Research Institute, Leshan 614004, China.
Nanomaterials (Basel). 2025 Jul 11;15(14):1082. doi: 10.3390/nano15141082.
This work explores the physical properties of the MAX-phase material CrAlC through the application of density functional theory (DFT). The refined lattice parameters were determined through the minimization of the total energy. In order to explore the electronic properties and bonding features, we carried out computations on the band structure and charge density distribution. The calculated elastic constants () validated the mechanical stability of CrAlC. To assess the material's ductility or brittleness, we calculated Pugh's ratio, Poisson's ratio, and Cauchy pressure. The hardness was determined. This study examined the anisotropic behavior of CrAlC using directional analyses of its elastic properties and by computing relevant anisotropy indicators. We examined several key properties of CrAlC, including the Grüneisen parameter, acoustic characteristics, Debye temperature, thermal conductivity, melting point, heat capacity, Helmholtz free energy, entropy, and internal energy. Phonon dispersion spectra were analyzed to assess the dynamic stability of CrAlC.
本工作通过应用密度泛函理论(DFT)探索了MAX相材料CrAlC的物理性质。通过使总能量最小化来确定精确的晶格参数。为了探索电子性质和键合特征,我们对能带结构和电荷密度分布进行了计算。计算得到的弹性常数验证了CrAlC的力学稳定性。为了评估材料的延展性或脆性,我们计算了普氏比值、泊松比和柯西压力。确定了硬度。本研究通过对CrAlC弹性性质的定向分析以及计算相关各向异性指标,研究了其各向异性行为。我们研究了CrAlC的几个关键性质,包括格林爱森参数、声学特性、德拜温度、热导率、熔点、热容、亥姆霍兹自由能、熵和内能。分析了声子色散谱以评估CrAlC的动态稳定性。