抑制性胞嘧啶甲基化是病毒基因在不同真核生物间转移的一个标志。

Repressive Cytosine Methylation is a Marker of Viral Gene Transfer Across Divergent Eukaryotes.

作者信息

Sarre Luke A, Gastellou Peralta Giselle Azucena, Romero Charria Pedro, Ovchinnikov Vladimir, de Mendoza Alex

机构信息

School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.

Centre for Epigenetics, Queen Mary University of London, London, UK.

出版信息

Mol Biol Evol. 2025 Jul 30;42(8). doi: 10.1093/molbev/msaf176.

Abstract

Cytosine DNA methylation patterns vary widely across eukaryotes, with its ancestral roles being understood to have included both transposable element (TE) silencing and host gene regulation. To further explore these claims, in this study, we reevaluate the evolutionary origins of DNA methyltransferases and characterize the roles of cytosine methylation on underexplored lineages, including the amoebozoan Acanthamoeba castellanii, the glaucophyte Cyanophora paradoxa, and the heterolobosean Naegleria gruberi. Our analysis of DNA methyltransferase evolution reveals a rich ancestral eukaryotic repertoire, with several eukaryotic lineages likely subsequently acquiring enzymes through lateral gene transfer (LGT). In the three species examined, DNA methylation is enriched on young TEs and silenced genes, suggesting an ancestral repressive function, without the transcription-linked gene body methylation of plants and animals. Consistent with this link with silencing, methylated genomic regions co-localize with heterochromatin marks, including H3K9me3 and H3K27me3. Notably, the closest homologs of many of the silenced, methylated genes in diverse eukaryotes belong to viruses, including giant viruses. Given the widespread occurrence of this pattern across diverse eukaryotic groups, we propose that cytosine methylation was a silencing mechanism originally acquired from bacterial donors, which was used to mitigate the expression of both transposable and viral elements, and that this function may persist in creating a permissive atmosphere for LGT in diverse eukaryotic lineages. These findings further highlight the importance of epigenetic information to annotate eukaryotic genomes, as it helps delimit potentially adaptive LGTs from silenced parasitic elements.

摘要

胞嘧啶DNA甲基化模式在真核生物中差异很大,其原始作用被认为包括转座元件(TE)沉默和宿主基因调控。为了进一步探究这些说法,在本研究中,我们重新评估了DNA甲基转移酶的进化起源,并描述了胞嘧啶甲基化在未充分研究的谱系中的作用,包括变形虫类的卡氏棘阿米巴、灰胞藻的奇异蓝囊藻和异叶足虫类的格氏耐格里虫。我们对DNA甲基转移酶进化的分析揭示了丰富的原始真核生物基因库,几个真核生物谱系可能随后通过横向基因转移(LGT)获得了酶。在所研究的三个物种中,DNA甲基化在年轻的TE和沉默基因上富集,表明其具有原始的抑制功能,而没有动植物中与转录相关的基因体甲基化。与这种与沉默的联系一致,甲基化的基因组区域与异染色质标记共定位,包括H3K9me3和H3K27me3。值得注意的是,不同真核生物中许多沉默的甲基化基因的最接近同源物属于病毒,包括巨型病毒。鉴于这种模式在不同真核生物群体中广泛存在,我们提出胞嘧啶甲基化是一种最初从细菌供体获得的沉默机制,用于减轻转座元件和病毒元件的表达,并且这种功能可能持续存在,为不同真核生物谱系中的LGT创造一个宽松的环境。这些发现进一步强调了表观遗传信息对注释真核生物基因组的重要性,因为它有助于区分潜在的适应性LGT和沉默的寄生元件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac2b/12344493/01f6b65ac94e/msaf176f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索