Suppr超能文献

环节动物甲基组揭示了两侧对称动物中与发育和衰老相关的古老表观遗传侵蚀。

Annelid methylomes reveal ancestral developmental and aging-associated epigenetic erosion across Bilateria.

机构信息

School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.

Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, 1030, Austria.

出版信息

Genome Biol. 2024 Aug 1;25(1):204. doi: 10.1186/s13059-024-03346-z.

Abstract

BACKGROUND

DNA methylation in the form of 5-methylcytosine (5mC) is the most abundant base modification in animals. However, 5mC levels vary widely across taxa. While vertebrate genomes are hypermethylated, in most invertebrates, 5mC concentrates on constantly and highly transcribed genes (gene body methylation; GbM) and, in some species, on transposable elements (TEs), a pattern known as "mosaic". Yet, the role and developmental dynamics of 5mC and how these explain interspecies differences in DNA methylation patterns remain poorly understood, especially in Spiralia, a large clade of invertebrates comprising nearly half of the animal phyla.

RESULTS

Here, we generate base-resolution methylomes for three species with distinct genomic features and phylogenetic positions in Annelida, a major spiralian phylum. All possible 5mC patterns occur in annelids, from typical invertebrate intermediate levels in a mosaic distribution to hypermethylation and methylation loss. GbM is common to annelids with 5mC, and methylation differences across species are explained by taxon-specific transcriptional dynamics or the presence of intronic TEs. Notably, the link between GbM and transcription decays during development, alongside a gradual and global, age-dependent demethylation in adult stages. Additionally, reducing 5mC levels with cytidine analogs during early development impairs normal embryogenesis and reactivates TEs in the annelid Owenia fusiformis.

CONCLUSIONS

Our study indicates that global epigenetic erosion during development and aging is an ancestral feature of bilateral animals. However, the tight link between transcription and gene body methylation is likely more important in early embryonic stages, and 5mC-mediated TE silencing probably emerged convergently across animal lineages.

摘要

背景

以 5-甲基胞嘧啶(5mC)形式存在的 DNA 甲基化是动物中最丰富的碱基修饰形式。然而,5mC 水平在不同类群之间差异很大。脊椎动物基因组高度甲基化,而在大多数无脊椎动物中,5mC 集中在持续和高度转录的基因(基因体甲基化;GbM)上,在一些物种中,集中在转座元件(TEs)上,这种模式被称为“镶嵌”。然而,5mC 的作用和发育动态以及这些如何解释物种间 DNA 甲基化模式的差异仍知之甚少,特别是在螺旋动物门,这是一个包含近一半动物门的大型无脊椎动物分支。

结果

在这里,我们为环节动物门中具有不同基因组特征和系统发育位置的三个物种生成了基于碱基分辨率的甲基组图谱。在环节动物门中,所有可能的 5mC 模式都存在,从典型的无脊椎动物中间镶嵌分布水平到高度甲基化和甲基化丢失。GbM 在具有 5mC 的环节动物中很常见,物种间的甲基化差异可以用分类特异性转录动力学或内含子 TEs 的存在来解释。值得注意的是,GbM 与转录之间的联系在发育过程中减弱,同时在成年阶段,出现逐渐的、全局的、年龄依赖性去甲基化。此外,在早期发育过程中用胞嘧啶类似物降低 5mC 水平会损害正常胚胎发生并使环节动物 Owenia fusiformis 中的 TEs 重新激活。

结论

我们的研究表明,发育和衰老过程中的全局表观遗传侵蚀是两侧动物的一个古老特征。然而,转录和基因体甲基化之间的紧密联系可能在早期胚胎阶段更为重要,5mC 介导的 TE 沉默可能在动物谱系中趋同出现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b4/11292947/9f8d6995f514/13059_2024_3346_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验